
������� �	�
��

2001 Mixed Signal Products

User’s Guide

SLAU049A

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

 How to Use This Manual

iii Read This First

Preface

Read This First

About This Manual

The MSP430x1xx User’s Guide is intended to assist the development of
MSP430x1xx family products by assembling together and presenting
hardware and software information in a manner that is easy for engineers and
programmers to use.

This manual discusses modules and peripherals of the MSP430x1xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family. Therefore, a user must always consult
the data sheet of any device of interest to determine what peripherals and
modules are implemented, and exactly how they are implemented on that
particular device.

How to Use This Manual

This document contains the following chapters:

Chapter 1 – Introduction

Chapter 2 – Architectural Overview

Chapter 3 – System Resets, Interrupts, and Operating Modes

Chapter 4 – Memory

Chapter 5 – 16-Bit CPU

Chapter 6 – Hardware Multiplier

Chapter 7 – Basic Clock Module

Chapter 8 – Digital I/O Configuration

Chapter 9 – Watchdog Timer

Chapter 10 – Timer_A

Chapter 11 – Timer_B

Chapter 12 – USART Peripheral Interface, UART Mode

Chapter 13 – USART Peripheral Interface, SPI Mode

Related Documentation From Texas Instruments

iv

Chapter 14 – Comparator_A

Chapter 15 – ADC12

Chapter 16 – ADC10

Appendix A – Peripheral File Map

Appendix B – Instruction Set Description

Appendix C – Flash Memory

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s.

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/sc/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

 Running Title—Attribute Reference

v Chapter Title—Attribute Reference

Contents

1 Introduction 1-1.
1.1 Features and Capabilities 1-2.
1.2 11x Devices 1-3.
1.3 11x1 Devices 1-3.
1.4 11x2 Devices 1-4.
1.5 12x Devices 1-4.
1.6 12x2 Devices 1-4.
1.7 13x Devices 1-5.
1.8 14x Devices 1-5.

2 Architectural Overview 2-1.
2.1 Introduction 2-2.
2.2 Central Processing Unit 2-2.
2.3 Program Memory 2-3.
2.4 Data Memory 2-3.
2.5 Operation Control 2-3.
2.6 Peripherals 2-4.
2.7 Oscillator and Clock Generator 2-4.

3 System Resets, Interrupts, and Operating Modes 3-1.
3.1 System Reset and Initialization 3-2.

3.1.1 Introduction 3-2.
3.1.2 Device Initialization After System Reset 3-4.

3.2 Global Interrupt Structure 3-5.
3.3 MSP430 Interrupt-Priority Scheme 3-6.

3.3.1 Operation of Global Interrupt—Reset/NMI 3-8.
3.3.2 Operation of Global Interrupt—Oscillator Fault Control 3-9.

3.4 Interrupt Processing 3-9.
3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs) 3-11.
3.4.2 Interrupt Vector Addresses 3-20.

3.5 Operating Modes 3-23.
3.5.1 Low-Power Mode 0 and 1 (LPM0 and LPM1) 3-27.
3.5.2 Low-Power Modes 2 and 3 (LPM2 and LPM3) 3-28.
3.5.3 Low-Power Mode 4 (LPM4) 3-28.

3.6 Basic Hints for Low-Power Applications 3-29.

4 Memory 4-1.
4.1 Introduction 4-2.
4.2 Data in the Memory 4-3.

Contents

vi

4.3 Internal ROM Organization 4-4.
4.3.1 Processing of ROM Tables 4-4.
4.3.2 Computed Branches and Calls 4-5.

4.4 RAM and Peripheral Organization 4-6.
4.4.1 Random Access Memory 4-6.
4.4.2 Peripheral Modules—Address Allocation 4-8.
4.4.3 Peripheral Modules—Special Function Registers (SFRs) 4-10.

5 16-Bit CPU 5-1.
5.1 CPU Registers 5-2.

5.1.1 The Program Counter (PC) 5-2.
5.1.2 The System Stack Pointer (SP) 5-2.
5.1.3 The Status Register (SR) 5-4.
5.1.4 The Constant Generator Registers CG1 and CG2 5-5.

5.2 Addressing Modes 5-7.
5.2.1 Register Mode 5-8.
5.2.2 Indexed Mode 5-9.
5.2.3 Symbolic Mode 5-10.
5.2.4 Absolute Mode 5-11.
5.2.5 Indirect Mode 5-12.
5.2.6 Indirect Autoincrement Mode 5-13.
5.2.7 Immediate Mode 5-14.
5.2.8 Clock Cycles, Length of Instruction 5-15.

5.3 Instruction Set Overview 5-18.
5.3.1 Double-Operand (Format I) Instructions 5-19.
5.3.2 Single-Operand (Format II) Instructions 5-20.
5.3.3 Conditional Jumps 5-21.
5.3.4 Short Form of Emulated Instructions 5-22.
5.3.5 Miscellaneous 5-23.

5.4 Instruction Map 5-24.

6 Hardware Multiplier 6-1.
6.1 Hardware Multiplier Module Support 6-2.
6.2 Hardware Multiplier Operation 6-3.

6.2.1 Multiply Unsigned, 16×16 bit, 16× 8 bit, 8× 16 bit, 8× 8 bit 6-5.
6.2.2 Multiply Signed, 16×16 bit, 16×8 bit, 8×16 bit, 8×8 bit 6-6.
6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit 6-7.
6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit 6-8.

6.3 Hardware Multiplier Registers 6-9.
6.4 Hardware Multiplier Special Function Bits 6-10.
6.5 Hardware Multiplier Software Restrictions 6-10.

6.5.1 Hardware Multiplier Software Restrictions—Address Mode 6-10.
6.5.2 Hardware Multiplier Software Restrictions—Interrupt Routines 6-11.
6.5.3 Hardware Multiplier Software Restrictions—MACS 6-12.

7 Basic Clock Module 7-1.
7.1 Basic Clock Module 7-2.
7.2 LFXT1 and XT2 Oscillators 7-4.

7.2.1 LFXT1 Oscillator 7-4.
7.2.2 XT2 Oscillator 7-5.
7.2.3 Oscillator Fault Detection 7-6.

 Contents

vii Contents

7.2.4 Select DCO Oscillator for MCLK on XT Oscillator Fault 7-8.
7.3 Digitally-Controlled Oscillator (DCO) 7-10.

7.3.1 Operation of the DCO Modulator 7-12.
7.4 Basic Clock Module Operating Modes 7-14.

7.4.1 Starting From Power Up Clear (PUC) 7-14.
7.4.2 Adjusting the Basic Clock 7-14.
7.4.3 Basic Clock Features for Low-Power Applications 7-15.
7.4.4 Selecting a Crystal Clock for MCLK 7-15.
7.4.5 Synchronization of Clock Signals 7-17.

7.5 Basic Clock Module Control Registers 7-18.
7.5.1 Digitally-Controlled Oscillator (DCO) Clock-Frequency Control 7-18.
7.5.2 Oscillator and Clock Control Register 7-18.
7.5.3 Special-Function Register Bits 7-20.

8 Digital I/O Configuration 8-1.
8.1 Introduction 8-2.
8.2 Ports P1, P2 8-3.

8.2.1 Port P1, Port P2 Control Registers 8-4.
8.2.2 Port P1, Port P2 Schematic 8-7.
8.2.3 Port P1, P2 Interrupt Control Functions 8-8.

8.3 Ports P3, P4, P5, P6 8-9.
8.3.1 Port P3–P6 Control Registers 8-9.
8.3.2 Port P3–P6 Schematic 8-11.

9 Watchdog Timer 9-1.
9.1 The Watchdog Timer 9-2.

9.1.1 Watchdog Timer Register 9-3.
9.1.2 Watchdog Timer Interrupt Control Functions 9-5.
9.1.3 Watchdog Timer Operation 9-5.

10 Timer_A 10-1.
10.1 Introduction 10-2.
10.2 Timer_A Operation 10-4.

10.2.1 Timer Mode Control 10-4.
10.2.2 Clock Source Select and Divider 10-5.
10.2.3 Starting the Timer 10-6.

10.3 Timer Modes 10-7.
10.3.1 Timer—Stop Mode 10-7.
10.3.2 Timer—Up Mode 10-7.
10.3.3 Timer—Continuous Mode 10-9.
10.3.4 Timer—Up/Down Mode 10-10.

10.4 Capture/Compare Blocks 10-13.
10.4.1 Capture/Compare Block—Capture Mode 10-14.
10.4.2 Capture/Compare Block—Compare Mode 10-18.

10.5 The Output Unit 10-19.
10.5.1 Output Unit—Output Modes 10-20.
10.5.2 Output Control Block 10-21.
10.5.3 Output Examples 10-22.

10.6 Timer_A Registers 10-24.
10.6.1 Timer_A Control Register TACTL 10-25.
10.6.2 Timer_A Register TAR 10-26.

Contents

viii

10.6.3 Capture/Compare Control Register CCTLx 10-27.
10.6.4 Timer_A Interrupt Vector Register 10-29.

10.7 Timer_A UART 10-33.

11 Timer_B 11-1.
11.1 Introduction 11-2.

11.1.1 Similarities and Differences From Timer_A 11-2.
11.2 Timer_B Operation 11-5.

11.2.1 Timer Length 11-5.
11.2.2 Timer Mode Control 11-5.
11.2.3 Clock Source Select and Divider 11-6.
11.2.4 Starting the Timer 11-7.

11.3 Timer Modes 11-8.
11.3.1 Timer—Stop Mode 11-8.
11.3.2 Timer—Up Mode 11-8.
11.3.3 Timer—Continuous Mode 11-10.
11.3.4 Timer—Up/Down Mode 11-12.

11.4 Capture/Compare Blocks 11-15.
11.4.1 Capture/Compare Block—Capture Mode 11-16.
11.4.2 Capture/Compare Block—Compare Mode 11-19.

11.5 The Output Unit 11-23.
11.5.2 Output Control Block 11-25.
11.5.3 Output Examples 11-26.

11.6 Timer_B Registers 11-29.
11.6.1 Timer_B Control Register TBCTL 11-29.
11.6.2 Timer_B Register TBR 11-32.
11.6.3 Capture/Compare Control Register CCTLx 11-32.
11.6.4 Timer_B Interrupt Vector Register 11-35.

12 USART Peripheral Interface, UART Mode 12-1.
12.1 USART Peripheral Interface 12-2.
12.2 USART Peripheral Interface, UART Mode 12-3.

12.2.1 UART Serial Asynchronous Communication Features 12-3.
12.3 Asynchronous Operation 12-4.

12.3.1 Asynchronous Frame Format 12-4.
12.3.2 Baud Rate Generation in Asynchronous Communication Format 12-5.
12.3.3 Asynchronous Communication Formats 12-7.
12.3.4 Idle-Line Multiprocessor Format 12-7.
12.3.5 Address-Bit Multiprocessor Format 12-9.

12.4 Interrupt and Enable Functions 12-11.
12.4.1 USART Receive Enable Bit 12-11.
12.4.2 USART Transmit Enable Bit 12-12.
12.4.3 USART Receive Interrupt Operation 12-13.
12.4.4 USART Transmit Interrupt Operation 12-14.

12.5 Control and Status Registers 12-15.
12.5.1 USART Control Register U0CTL, U1CTL 12-16.
12.5.2 Transmit Control Register U0TCTL, U1TCTL 12-18.
12.5.3 Receiver Control Register U0RCTL, U1RCTL 12-19.
12.5.4 Baud Rate Select and Modulation Control Registers 12-21.
12.5.5 Receive-Data Buffer U0RXBUF, U1RXBUF 12-22.
12.5.6 Transmit Data Buffer U0TXBUF, U1TXBUF 12-22.

 Contents

ix Contents

12.6 Utilizing Features of Low-Power Modes 12-23.
12.6.1 Receive-Start Operation From UART Frame 12-23.
12.6.2 Maximum Utilization of Clock Frequency vs Baud Rate UART Mode 12-25.
12.6.3 Support of Multiprocessor Modes for Reduced Use of

MSP430 Resources 12-26.
12.7 Baud Rate Considerations 12-26.

12.7.1 Bit Timing in Transmit Operation 12-27.
12.7.2 Typical Baud Rates and Errors 12-29.
12.7.3 Synchronization Error 12-30.

13 USART Peripheral Interface, SPI Mode 13-1.
13.1 USART Peripheral Interface 13-2.
13.2 USART Peripheral Interface, SPI Mode 13-3.

13.2.1 SPI Mode Features 13-3.
13.3 Synchronous Operation 13-4.

13.3.1 Master SPI Mode 13-7.
13.3.2 Slave SPI Mode 13-8.

13.4 Interrupt and Control Functions 13-9.
13.4.1 USART Receive/Transmit Enable Bit, Receive Operation 13-9.
13.4.2 USART Receive/Transmit Enable Bit, Transmit Operation 13-11.
13.4.3 USART Receive-Interrupt Operation 13-13.
13.4.4 Transmit-Interrupt Operation 13-14.

13.5 Control and Status Registers 13-15.
13.5.1 USART Control Register 13-16.
13.5.2 Transmit Control Register U0TCTL, U1TCTL 13-17.
13.5.3 Receive Control Register U0RCTL, U1TCTL 13-18.
13.5.4 Baud-Rate Select and Modulation Control Registers 13-19.
13.5.5 Receive Data Buffer U0RXBUF, U1RXBUF 13-19.
13.5.6 Transmit Data Buffer U0TXBUF, U1TXBUF 13-20.

14 Comparator_A 14-1.
14.1 Comparator_A Overview 14-2.
14.2 Comparator_A Description 14-3.

14.2.1 Input Analog Switches 14-3.
14.2.2 Input Multiplexer 14-3.
14.2.3 The Comparator 14-3.
14.2.4 The Output Filter 14-3.
14.2.5 The Voltage Reference Generator 14-4.
14.2.6 Comparator_A Interrupt Circuitry 14-5.

14.3 Comparator_A Control Registers 14-6.
14.3.1 Comparator_A, Control Register CACTL1 14-6.
14.3.2 Comparator_A, Control Register CACTL2 14-7.
14.3.3 Comparator_A, Port Disable Register CAPD 14-7.

14.4 Comparator_A in Applications 14-9.
14.4.1 Analog Signals at Digital Inputs 14-9.
14.4.2 Comparator_A Used to Measure Resistive Elements 14-11.
14.4.3 Measuring Two Independent Resistive Element Systems 14-13.
14.4.4 Comparator_A Used to Detect a Current or Voltage Level 14-16.
14.4.5 Comparator_A Used to Measure a Current or Voltage Level 14-17.
14.4.6 Measuring the Offset Voltage of Comparator_A 14-20.
14.4.7 Compensating for the Offset Voltage of Comparator_A 14-22.

Contents

x

14.4.8 Adding Hysteresis to Comparator_A 14-22.

15 ADC12 15-1.
15.1 Introduction 15-2.
15.2 ADC12 Description and Operation 15-4.

15.2.1 ADC Core 15-4.
15.2.2 Reference 15-5.

15.3 Analog Inputs and Multiplexer 15-6.
15.3.1 Analog Multiplexer 15-6.
15.3.2 Input Signal Considerations 15-7.
15.3.3 Using the Temperature Diode 15-7.

15.4 Conversion Memory 15-8.
15.5 Conversion Modes 15-9.

15.5.1 Single-Channel, Single-Conversion Mode 15-9.
15.5.2 Sequence-of-Channels Mode 15-12.
15.5.3 Repeat-Single-Channel Mode 15-16.
15.5.4 Repeat-Sequence-of-Channels Mode 15-17.
15.5.5 Switching Between Conversion Modes 15-19.
15.5.6 Power Down 15-20.

15.6 Conversion Clock and Conversion Speed 15-21.
15.7 Sampling 15-22.

15.7.1 Sampling Operation 15-22.
15.7.2 Sample Signal Input Selection 15-23.
15.7.3 Sampling Modes 15-24.
15.7.4 Using the MSC Bit 15-27.
15.7.5 Sample Timing Considerations 15-29.

15.8 ADC12 Control Registers 15-30.
15.8.1 Control Registers ADC12CTL0 and ADC12CTL1 15-31.
15.8.2 Conversion-Memory Registers ADC12MEMx 15-35.
15.8.3 Control Registers ADC12MCTLx 15-35.
15.8.4 ADC12 Interrupt Flags ADC12IFG.x and Interrupt-Enable Registers

ADC12IEN.x 15-37.
15.8.5 ADC12 Interrupt Vector Register ADC12IV 15-37.

15.9 A/D Grounding and Noise Considerations 15-41.

16 ADC10 16-1.
16.1 Introduction 16-2.
16.2 ADC10 Description and Operation 16-4.

16.2.1 ADC Core 16-4.
16.2.2 Reference 16-5.

16.3 Analog Inputs and Multiplexer 16-6.
16.3.1 Analog Multiplexer 16-6.
16.3.2 Input Signal Considerations 16-7.
16.3.3 Using the Temperature Sensor 16-7.

16.4 Conversion Modes 16-8.
16.4.1 Single-Channel, Single-Conversion Mode 16-8.
16.4.2 Sequence-of-Channels Mode 16-9.
16.4.3 Repeat-Single-Channel Mode 16-11.
16.4.4 Repeat-Sequence-of-Channels Mode 16-13.
16.4.5 Switching Between Conversion Modes 16-15.
16.4.6 Power Down 16-16.

 Contents

xi Contents

16.5 Conversion Clock and Conversion Speed 16-17.
16.6 Sampling 16-18.

16.6.1 Sampling Operation 16-18.
16.6.2 Sample Signal Input Selection 16-19.
16.6.3 Using the MSC Bit 16-20.
16.6.4 Sample Timing Considerations 16-21.

16.7 ADC10 Control Registers 16-22.
16.7.1 Control Registers ADC10CTL0 and ADC10CTL1 16-22.
16.7.2 Conversion-Memory Register ADC10MEM 16-26.

16.8 A/D Grounding and Noise Considerations 16-26.

A Peripheral File Map A-1.
A.1 Overview A-2.
A.2 Special Function Register of MSP430x1xx Family, Byte Access A-3.
A.3 Digital I/O, Byte Access A-3.
A.4 Basic Clock Registers, Byte Access A-5.
A.5 EPROM Control Register Byte Access A-5.
A.6 Comparator_A Registers, Byte Access A-5.
A.7 USART0, USART1, UART Mode (Sync=0), Byte Access A-6.
A.8 USART0, USART1, SPI Mode (Sync=1), Byte Access A-7.
A.9 ADC12 Registers, Byte and Word Access A-8.
A.10 Watchdog/Timer, Word Access A-11.
A.11 Flash Control Registers, Word Access A-11.
A.12 Hardware Multiplier, Word Access A-12.
A.13 Timer_A Registers, Word Access A-13.
A.14 Timer_B Registers, Word Access A-15.

B Instruction Set Description B-1.
B.1 Instruction Set Overview B-2.

B.1.1 Instruction Formats B-4.
B.1.2 Conditional and Unconditional Jumps (Core Instructions) B-5.
B.1.3 Emulated Instructions B-6.

B.2 Instruction Set Description B-8.

C Flash Memory C-1.
C.1 Flash Memory Organization C-2.

C.1.1 Why Is a Flash Memory Module Divided Into Several Segments? C-5.
C.2 Flash Memory Data Structure and Operation C-5.

C.2.1 Flash Memory Basic Functions C-6.
C.2.2 Flash Memory Block Diagram C-6.
C.2.3 Flash Memory, Basic Operation C-6.
C.2.4 Flash Memory Status During Code Execution C-8.
C.2.5 Flash Memory Status During Erase C-8.
C.2.6 Flash Memory Status During Write (Programming) C-10.

C.3 Flash Memory Control Registers C-13.
C.3.1 Flash Memory Control Register FCTL1 C-13.
C.3.2 Flash Memory Control Register FCTL2 C-15.
C.3.3 Flash Memory Control Register FCTL3 C-16.

C.4 Flash Memory, Interrupt, and Security Key Violation C-18.
C.4.1 Example of an NMI Interrupt Handler C-20.
C.4.2 Protecting One-Flash Memory-Module Systems From Corruption C-20.

Running Title—Attribute Reference

xii

C.5 Flash Memory Access via JTAG and Software C-22.
C.5.1 Flash Memory Protection C-22.
C.5.2 Program Flash Memory Module via Serial Data Link Using JTAG Feature C-22. .
C.5.3 Programming a Flash Memory Module via Controller Software C-22.

 Running Title—Attribute Reference

xiii Contents

Figures

2–1 MSP430 System Configuration 2-2.
2–2 Bus Connection of Modules/Peripherals 2-4.
3–1 Power-On Reset and Power-Up Clear Schematic 3-2.
3–2 Power-On Reset Timing on Fast VCC Rise Time 3-3.
3–3 Power-On Reset Timing on Slow VCC Rise Time 3-3.
3–4 Interrupt Priority Scheme 3-6.
3–5 Block Diagram of NMI Interrupt Sources 3-7.
3–6 RST/NMI Mode Selection 3-8.
3–7 Interrupt Processing 3-10.
3–8 Return From Interrupt 3-10.
3–9 Status Register (SR) 3-11.
3–10 MSP430x1xx Operating Modes for Basic Clock System 3-26.
3–11 Typical Current Consumption of 13x and 14x Devices vs Operating Modes 3-27.
4–1 Memory Map of Basic Address Space 4-2.
4–2 Memory Data Bus 4-2.
4–3 Bits, Bytes, and Words in a Byte-Organized Memory 4-3.
4–4 ROM Organization 4-4.
4–5 Byte and Word Operation 4-6.
4–6 Register-Byte/Byte-Register Operations 4-7.
4–7 Example of RAM/Peripheral Organization 4-8.
5–1 Program Counter 5-2.
5–2 System Stack Pointer 5-2.
5–3 Stack Usage 5-3.
5–4 PUSH SP and POP SP 5-3.
5–5 Status Register Bits 5-4.
5–6 Operand Fetch Operation 5-13.
5–7 Double Operand Instruction Format 5-19.
5–8 Single Operand Instruction Format 5-20.
5–9 Conditional-Jump Instruction Format 5-21.
5–10 Core Instruction Map 5-24.
6–1 Connection of the Hardware Multiplier Module to the Bus System 6-2.
6–2 Block Diagram of the MSP430 16 ×16-Bit Hardware Multiplier 6-3.
6–3 Registers of the Hardware Multiplier 6-9.
7–1 Basic Clock Schematic 7-2.
7–2 Principle of LFXT1 Oscillator 7-4.
7–3 Off Signals for the LFXT1 Oscillator 7-5.
7–4 Off Signals for Oscillator XT2 7-5.
7–5 Oscillator-Fault-Interrupt 7-6.
7–6 Oscillator-Fault Signal 7-7.

Figures

xiv

7–7 Oscillator Fault in Oscillator Error Condition 7-7.
7–8 Oscillator Fault in Oscillator Error Condition at Start-Up 7-8.
7–9 NMI/OSCFault Interrupt Handler 7-9.
7–10 DCO Schematic 7-10.
7–11 Principle Period Steps of the DCO 7-11.
7–12 On/Off Control of DCO 7-11.
7–13 Operation of the DCO Modulator 7-12.
7–14 Select Crystal Oscillator for MCLK, Example Uses LFXT1 for MCLK 7-15.
7–15 Timing to Select Crystal Oscillator for MCLK, Example Uses LFXT1 in HF

Mode for MCLK 7-16.
7–16 Select Another Clock Source Signal, Example Switches From DCOCLK to

LFXT1CLK for Clock MCLK 7-17.
8–1 Port P1, Port P2 Configuration 8-3.
8–2 Schematic of One Bit in Port P1, P2 8-7.
8–3 Ports P3–P6 Configuration 8-9.
8–4 Schematic of Bits Pn.x 8-11.
9–1 Schematic of Watchdog Timer 9-2.
9–2 Watchdog Timer Control Register 9-3.
9–3 Reading WDTCTL 9-4.
9–4 Writing to WDTCTL 9-4.
10–1 Timer_A Block Diagram 10-3.
10–2 Mode Control 10-4.
10–3 Schematic of 16-Bit Timer 10-5.
10–4 Schematic of Clock Source Select and Input Divider 10-5.
10–5 Timer Up Mode 10-7.
10–6 Up Mode Flag Setting 10-7.
10–7 New Period > Old Period 10-8.
10–8 New Period < Old Period 10-8.
10–9 Timer—Continuous Mode 10-9.
10–10 Continuous Mode Flag Setting 10-9.
10–11 Output Unit in Continuous Mode for Time Intervals 10-10.
10–12 Timer Up/Down Mode 10-10.
10–13 Output Unit in Up/Down Mode (II) 10-11.
10–14 Timer Up/Down Direction Control 10-11.
10–15 Up/Down Mode Flag Setting 10-12.
10–16 Altering CCR0—Timer in Up/Down Mode 10-12.
10–17 Capture/Compare Blocks 10-13.
10–18 Capture Logic Input Signal 10-14.
10–19 Capture Signal 10-15.
10–20 Capture Cycle 10-16.
10–21 Software Capture Example 10-17.
10–22 Output Unit 10-19.
10–23 Output Control Block 10-21.
10–24 Output Examples—Timer in Up Mode 10-23.
10–25 Output Examples—Timer in Continuous Mode 10-23.
10–26 Output Examples—Timer in Up/Down Mode (I) 10-24.
10–27 Timer_A Control Register TACTL 10-25.
10–28 TAR Register 10-26.
10–29 Capture/Compare Control Register CCTLx 10-27.
10–30 Capture/Compare Interrupt Flag 10-29.
10–31 Schematic of Capture/Compare Interrupt Vector Word 10-30.

 Figures

xv Figures

10–32 Vector Word Register 10-30.
10–33 UART Implementation 10-34.
10–34 Timer_A UART Timing 10-35.
11–1 Timer_B Block Diagram 11-4.
11–2 Mode Control 11-5.
11–3 Schematic of 16-Bit Timer 11-6.
11–4 Schematic of Clock Source Select and Input Divider 11-7.
11–5 Timer Up Mode 11-8.
11–6 Up Mode Flag Setting 11-8.
11–7 New Period > Old Period 11-9.
11–8 New Period < Old Period 11-10.
11–9 Timer Continuous Mode 11-10.
11–10 Continuous Mode Flag Setting 11-11.
11–11 Output Unit in Continuous Mode for Time Intervals 11-11.
11–12 Timer Up/Down Mode 11-12.
11–13 Output Unit in Up/Down Mode (II) 11-12.
11–14 Timer Up/Down Direction Control 11-13.
11–15 Up/Down Mode Flag Setting 11-13.
11–16 Altering TBCL0—Timer in Up/Down Mode 11-14.
11–17 Capture/Compare Blocks 11-15.
11–18 Capture Logic Input Signal 11-16.
11–19 Capture Signal 11-16.
11–20 Capture Cycle 11-17.
11–21 Software Capture Example 11-19.
11–22 Output Unit 11-23.
11–23 Output Control Block 11-25.
11–24 Output Examples—Timer in Up Mode 11-27.
11–25 Output Examples—Timer in Continuous Mode 11-27.
11–26 Output Examples—Timer in Up/Down Mode (I) 11-28.
11–27 Timer_B Control Register TBCTL 11-29.
11–28 TBR Register 11-32.
11–29 Capture/Compare Control Register CCTLx 11-32.
11–30 Capture/Compare Interrupt Flag 11-35.
11–31 Schematic of Capture/Compare Interrupt Vector Word 11-36.
11–32 Vector Word Register 11-36.
12–1 Block Diagram of USART 12-2.
12–2 Block Diagram of USART—UART Mode 12-3.
12–3 Asynchronous Frame Format 12-4.
12–4 Asynchronous Bit Format Example for n or n + 1 Clock Periods 12-4.
12–5 Typical Baud-Rate Generation Other Than MSP430 12-5.
12–6 MSP430 Baud Rate Generation Example for n or n + 1 Clock Periods 12-6.
12–7 Idle-Line Multiprocessor Format 12-7.
12–8 USART Receiver Idle Detect 12-8.
12–9 Double-Buffered WUT and TX Shift Register 12-8.
12–10 USART Transmitter Idle Generation 12-9.
12–11 Address-Bit Multiprocessor Format 12-10.
12–12 State Diagram of Receiver Enable 12-11.
12–13 State Diagram of Transmitter Enable 12-12.
12–14 Receive Interrupt Operation 12-13.
12–15 Transmit Interrupt Operation 12-14.

Figures

xvi

12–16 USART Control Register U0CTL, U1CTL 12-16.
12–17 Transmitter Control Register U0TCTL, U1TCTL 12-18.
12–18 Receiver-Control Register U0RCTL, U1TCTL 12-19.
12–19 USART Baud Rate Select Register 12-21.
12–20 USART Modulation Control Register 12-21.
12–21 USART0 Receive Data Buffer U0RXBUF, U1RXBUF 12-22.
12–22 Transmit Data Buffer U0TXBUF, U1TXBUF 12-22.
12–23 Receive-Start Conditions 12-23.
12–24 Receive-Start Timing Using URXS Flag, Start Bit Accepted 12-24.
12–25 Receive-Start Timing Using URXS Flag, Start Bit Not Accepted 12-24.
12–26 Receive-Start Timing Using URXS Flag, Glitch Suppression 12-24.
12–27 MSP430 Transmit Bit Timing 12-27.
12–28 MSP430 Transmit Bit Timing Errors 12-27.
12–29 Synchronization Error 12-30.
13–1 Block Diagram of USART 13-2.
13–2 Block Diagram of USART—SPI Mode 13-3.
13–3 MSP430 USART as Master, External Device With SPI as Slave 13-5.
13–4 Serial Synchronous Data Transfer 13-6.
13–5 Data Transfer Cycle 13-6.
13–6 MSP430 USART as Slave in Three-Pin or Four-Pin Configuration 13-7.
13–7 State Diagram of Receiver Enable Operation—MSP430 as Master 13-10.
13–8 State Diagram of Receive/Transmit Enable—MSP430 as Slave, Three-Pin Mode 13-10. . . .
13–9 State Diagram of Receive Enable—MSP430 as Slave, Four-Pin Mode 13-11.
13–10 State Diagram of Transmit Enable—MSP430 as Master 13-11.
13–11 State Diagram of Transmit Enable—MSP430 as Slave 13-12.
13–12 Receive Interrupt Operation 13-13.
13–13 Receive Interrupt State Diagram 13-13.
13–14 Transmit-Interrupt Operation 13-14.
13–15 USART Control Register 13-16.
13–16 Transmit Control Register U0TCTL, U1TCTL 13-17.
13–17 USART Clock Phase and Polarity 13-18.
13–18 Receive Control Register U0RCTL, U1TCTL 13-18.
13–19 USART Baud-Rate Select Register 13-19.
13–20 USART Modulation Control Register 13-19.
13–21 Receive Data Buffer U0RXBUF, U1RXBUF 13-19.
13–22 Transmit Data Buffer U0TXBUF, U1TXBUF 13-20.
14–1 Schematic of Comparator_A 14-2.
14–2 RC-Filter Response at the Output of the Comparator 14-4.
14–3 Comparator_A Interrupt System 14-5.
14–4 Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer 14-9.
14–5 Transfer Characteristic and Power Dissipation in a CMOS Gate 14-9.
14–6 Application Example With One Active(Driving R3) and Three Passive Pins

With Applied Analog Signals 14-10.
14–7 Temperature Measurement Systems 14-11.
14–8 Timing for Temperature Measurement Systems 14-12.
14–9 Two Independent Temperature Measurement Systems 14-13.
14–10 Temperature Measurement Via Temperature Sensor R1(meas) 14-14.
14–11 Temperature Measurement Via Temperature Sensor R2(meas) 14-15.
14–12 Detect a Voltage Level Using an External Reference Level 14-16.
14–13 Detect a Current Level Using an Internal Reference Level 14-17.
14–14 Measuring a Current Source 14-18.

 Figures

xvii Figures

14–15 Timing for Measuring a Current Source 14-18.
14–16 A/D Converter for Voltage Sources 14-19.
14–17 A/D Converter for Voltage Sources, Conversion Timing 14-19.
14–18 Measuring the Offset Voltage of the Comparator, CAEX = 0 14-20.
14–19 Offset Voltage of the Comparator, CAEX = 0 14-20.
14–20 Measuring the Offset Voltage of the Comparator, CAEX = 1 14-21.
14–21 Offset Voltage of the Comparator, CAEX = 1 14-21.
14–22 Use CAOUT at an External Pin to Add Hysteresis to the Reference Level 14-23.
15–1 ADC12 Schematic 15-2.
15–2 ADC Core, Input Multiplexer, and Sample-and-Hold 15-4.
15–3 Analog Multiplexer Channel 15-6.
15–4 Stopping Conversion With ENC Bit 15-10.
15–5 Single-Channel, Single-Conversion Mode 15-11.
15–6 Example Conversion-Memory Setup 15-12.
15–7 ENC Does Not Effect Active Sequence 15-13.
15–8 Sequence-of-Channels Mode 15-14.
15–9 Sequence-of-Channels Mode Flow 15-15.
15–10 Sequence-of-Channels Mode Example 15-16.
15–11 Repeat-Single-Channel Mode 15-17.
15–12 Repeat-Sequence-of-Channels Mode 15-19.
15–13 The Conversion Clock ADC12CLK 15-21.
15–14 The Sample-and-Hold Function 15-22.
15–15 Sample and Conversion, Basic Signal Timing 15-23.
15–16 Synchronized Sample and Conversion Signal With Enable Conversion 15-24.
15–17 Conversion Timing, Pulse-Sample Mode 15-25.
15–18 Pulse-Sample Mode Example Configuration 15-25.
15–19 Pulse-Sample Mode Example Timing 15-26.
15–20 Conversion Timing for Extended-Sample Mode 15-26.
15–21 Extended-Sample Mode Example Configuration 15-27.
15–22 Extended-Sample Mode Example Timing 15-27.
15–23 Use of MSC Bit With Nonrepeated Modes 15-28.
15–24 Use of MSC Bit With Repeated Modes 15-28.
15–25 Equivalent Circuit 15-29.
15–26 A/D Grounding and Noise Considerations 15-41.
16–1 ADC10 Schematic 16-2.
16–2 ADC Core, Input Multiplexer, and Sample-and-Hold 16-4.
16–3 Analog Multiplexer Channel 16-6.
16–4 Single-Channel, Single-Conversion Mode 16-9.
16–5 Sequence-of-Channels Mode 16-11.
16–6 Repeat-Single-Channel Mode 16-13.
16–7 Repeat-Sequence-of-Channels Mode 16-15.
16–8 The Conversion Clock ADC10CLK 16-17.
16–9 Sample and Conversion, Basic Signal Timing, ADC10OSC Selected for ADC10CLK 16-18.
16–10 Sample and Conversion, Basic Signal Timing, SMCLK Selected for ADC10CLK 16-18.
16–11 Synchronized Sample and Conversion Signal With Enable Conversion 16-19.
16–12 Use of MSC Bit With Nonrepeated Modes 16-20.
16–13 Use of MSC Bit With Repeated Modes 16-20.
16–14 Equivalent Circuit 16-21.
16–15 A/D Grounding and Noise Considerations 16-27.
B–1 Double-Operand Instructions B-4.

Figures

xviii

B–2 Single-Operand Instructions B-5.
B–3 Conditional and Unconditional Jump Instructions B-5.
B–4 Decrement Overlap B-26.
B–5 Main Program Interrupt B-46.
B–6 Destination Operand—Arithmetic Shift Left B-47.
B–7 Destination Operand—Carry Left Shift B-48.
B–8 Destination Operand—Arithmetic Right Shift B-49.
B–9 Destination Operand—Carry Right Shift B-51.
B–10 Destination Operand Byte Swap B-58.
B–11 Destination Operand Sign Extension B-59.
C–1 Interconnection of Flash Memory Module(s) C-2.
C–2 Flash Memory Module1 Disabled, Module2 Can Execute Code

Simultaneously C-3.
C–3 Flash Memory Module Example C-4.
C–4 Segments in Flash Memory Module, 4K-Byte Example C-5.
C–5 Flash Memory Module Block Diagram C-6.
C–6 Block Diagram of the Timing Generator in the Flash Memory Module C-7.
C–7 Basic Flash EEPROM Module Timing During the Erase Cycle C-9.
C–8 Basic Flash Memory Module Timing During Write (Single Byte or Word) Cycle C-11.
C–9 Basic Flash Memory Module Timing During a Block-Write Cycle C-11.
C–10 Access Violation (Non)Maskable Interrupt Scheme in Flash Memory Module C-19.
C–11 Signal Connections to MSP430 JTAG Pins C-22.

 Running Title—Attribute Reference

xix Contents

Tables

3–1 Interrupt Control Bits in SFRs 3-11.
3–2 MSP430x11xx Interrupt Enable Registers 1 and 2 3-12.
3–3 MSP430x12x Interrupt Enable Registers 1 and 2 3-12.
3–4 MSP430x13x Interrupt Enable Registers 1 and 2 3-13.
3–5 MSP430x14x Interrupt Enable Registers 1 and 2 3-13.
3–6 MSP430x11xx Interrupt Flag Registers 1 and 2 3-14.
3–7 MSP430x12x Interrupt Flag Registers 1 and 2 3-15.
3–8 MSP430x13x Interrupt Flag Registers 1 and 2 3-16.
3–9 MSP430x14x Interrupt Flag Registers 1 and 2 3-17.
3–10 MSP430x11xx Module Enable Registers 1 and 2 3-18.
3–11 MSP430x12x Module Enable Registers 1 and 2 3-18.
3–12 MSP430x13x Module Enable Registers 1 and 2 3-19.
3–13 MSP430x14x Module Enable Registers 1 and 2 3-19.
3–14 Interrupt Sources, Flags, and Vectors of MSP430x11xx Configurations 3-20.
3–15 Interrupt Sources, Flags, and Vectors of MSP430x12x Configurations 3-21.
3–16 Interrupt Sources, Flags, and Vectors of MSP430x13x and MSP430x14x

Configurations 3-22.
3–17 Low Power Mode Logic Chart for Basic Clock System 3-26.
4–1 Peripheral File Address Map—Word Modules 4-9.
4–2 Peripheral File Address Map—Byte Modules 4-10.
4–3 Special Function Register Address Map 4-11.
5–1 Register by Functions 5-2.
5–2 Description of Status Register Bits 5-4.
5–3 Values of Constant Generators CG1, CG2 5-5.
5–4 Source/Destination Operand Addressing Modes 5-7.
5–5 Register Mode Description 5-8.
5–6 Indexed Mode Description 5-9.
5–7 Symbolic Mode Description 5-10.
5–8 Absolute Mode Description 5-11.
5–9 Indirect Mode Description 5-12.
5–10 Indirect Autoincrement Mode Description 5-13.
5–11 Immediate Mode Description 5-14.
5–12 Instruction Format I and Addressing Modes 5-15.
5–13 Execution Cycles for Double Operand Instructions 5-15.
5–14 Instruction Format-II and Addressing Modes 5-16.
5–15 Execution Cycles for Single Operand Instructions 5-16.
5–16 Miscellaneous Instructions or Operations 5-17.
5–17 Double Operand Instruction Format Results 5-19.
5–18 Single Operand Instruction Format Results 5-20.

Tables

xx

5–19 Conditional-Jump Instructions 5-21.
5–20 Emulated Instructions 5-22.
6–1 Sum Extension Register Contents 6-4.
6–2 Hardware Multiplier Registers 6-9.
8–1 Port P1 Registers 8-4.
8–2 Port P2 Registers 8-4.
8–3 Port P3–P6 Registers 8-10.
9–1 WDTCNT Taps 9-3.
10–1 Timer Modes 10-4.
10–2 State of OUTx at Next Rising Edge of Timer Clock 10-22.
10–3 Timer_A Registers 10-24.
10–4 Mode Control 10-25.
10–5 Input Clock Divider Control Bits 10-26.
10–6 Clock Source Selection 10-26.
10–7 Capture/Compare Control Register Output Mode 10-28.
10–8 Capture/Compare Control Register Capture Mode 10-29.
10–9 Vector Register TAIV Description 10-31.
11–1 Timer Modes 11-6.
11–2 Compare Latch Operating Modes 11-21.
11–3 State of OUTx at Next Rising Edge of Timer Clock 11-26.
11–4 Timer_B Registers 11-29.
11–5 Mode Control 11-30.
11–6 Input Clock Divider Control Bits 11-30.
11–7 Clock Source Selection 11-30.
11–8 Capture/Compare Control Register Output Mode 11-34.
11–9 Capture/Compare Control Register Capture Mode 11-35.
11–10 Vector Register TBIV Description 11-37.
12–1 USART Interrupt Control and Enable Bits—UART Mode 12-11.
12–2 USART0 Control and Status Registers 12-15.
12–3 USART1 Control and Status Registers 12-15.
12–4 Interrupt Flag Set Conditions 12-20.
12–5 Receive Data Buffer Characters 12-22.
12–6 Commonly Used Baud Rates, Baud Rate Data, and Errors 12-29.
13–1 USART Interrupt Control and Enable Bits—SPI Mode 13-9.
13–2 USART0 Control and Status Registers 13-15.
13–3 USART1 Control and Status Registers 13-15.
14–1 Comparator_A Control Registers 14-6.
15–1 Reference Voltage Configurations 15-5.
15–2 Conversion-Modes Summary 15-9.
15–3 ADC12IV Interrupt-Vector Values 15-38.
16–1 Reference Voltage Configurations 16-5.
16–2 Conversion-Modes Summary 16-8.
C–1 Control Bits for Write or Erase Operation C-8.
C–2 Conditions to Read Data From Flash Memory C-12.

 Running Title—Attribute Reference

xxi Contents

Examples

12–1 4800 Baud 12-6.
12–2 19,200 Baud 12-6.
12–3 Error Example for 2400 Baud 12-28.
12–4 Synchronization Error—2400 Baud 12-31.

Running Title—Attribute Reference

xxii

Notes, Cautions, and Warnings

Software PUC. 3-2.
Word-Byte Operations 4-8.
Status Register Bits V, N, Z, and C 5-5.
Data in Registers 5-8.
Instruction Format II Immediate Mode 5-16.
Destination Address 5-18.
Instructions CMP and SUB 5-19.
LFXT1 Oscillator Fault Signal 7-7.
Control of DCOCLK Frequency 7-13.
Sourcing MCLK With 32768 Hz 7-16.
Writing to Read-Only Registers P1IN, P2IN 8-4.
Port P1, Port P2 Interrupt Sensitivity 8-6.
Function Select With P1SEL, P2SEL 8-7.
Writing to Read-Only Register 8-10.
Function Select With PnSEL Registers 8-11.
Watchdog Timer, Changing the Time Interval 9-6.
Use of the Word Count 10-1.
Capture With Timer Halted 10-16.
Changing Timer_A Control Bits 10-26.
Modifying Timer A_Register TAR 10-27.
Simultaneous Capture and Capture Mode Selection 10-29.
Writing to Read-Only Register TAIV 10-31.
Use of the Word Count 11-1.
Capture With Timer Halted 11-18.
Changing Timer_B Control Bits 11-32.
Modifying Timer_B Register TBR 11-32.
Simultaneous Capture and Capture Mode Selection 11-35.
Writing to Read-Only Register TBIV 11-37.
URXE Reenabled, UART Mode 12-11.
Writing to UxTXBUF, UART Mode 12-12.
Write to UxTXBUF/Reset of Transmitter, UART Mode 12-12.
Mark and Space Definitions 12-17.
Receive Status Control Bits 12-20.
Writing to UxTXBUF 12-22.
Break Detect (BRK) Bit With Halted UART Clock 12-25.
USART Synchronous Master Mode, Receive Initiation 13-7.
USPIIE Reenabled, SPI Mode 13-10.
Writing to UxTXBUF, SPI Mode 13-12.
Writing to UxTXBUF/Reset of Transmitter, SPI Mode 13-12.

 Contents

xxiii Chapter Title—Attribute Reference

Comparator Input Connection 14-3.
ADC12 Turnon Time 15-5.
Reference Voltage Settling Time 15-6.
Powering Down the Converter. 15-20.
Turning the ADC12 and Voltage Reference On or Off. 15-21.
Availability of ADC12CLK During Conversion 15-22.
Modifying ADC Control Register During Active Conversion 15-34.
Software Write to Register ADC12MEMx 15-35.
Writing to Read Only Register ADC12IV 15-38.
Basic Clock System 15-40.
ADC10 Turnon Time 16-4.
Reference Voltage Settling Time 16-5.
Offset Error of the Temperature Diode 16-7.
Powering Down Active Converter 16-16.
Considerations Before Turning the ADC10 and Voltage Reference On or Off 16-17.
Availability of ADC10CLK During Conversion 16-18.
Modifying ADC Control Register During Active Conversion 16-25.
Asterisked Instructions B-3.
Operations Using the Status Register (SR) for Destination B-4.
Conditional and Unconditional Jumps B-6.
Disable Interrupt B-28.
Enable Interrupt B-29.
Emulating No-Operation Instruction B-42.
The System Stack Pointer B-43.
The System Stack Pointer B-44.
RLA Substitution B-47.
RLC and RLC.B Emulation B-48.
Borrow Is Treated as a .NOT. B-52.
Borrow Is Treated as a .NOT. B-56.
Borrow Is Treated as a .NOT. Carry B-57.
Flash Memory Module(s) in MSP430 Devices C-2.

1-1Introduction

Introduction

This chapter outlines the features and capabilities of the Texas Instruments
(TI) MSP430x1xx family of microcontrollers.

The MSP430 employs a von-Neumann architecture, therefore, all memory
and peripherals are in one address space.

The MSP430 devices constitute a family of ultralow-power, 16-bit RISC
microcontrollers with an advanced architecture and rich peripheral set. The
architecture uses advanced timing and design features, as well as a highly
orthogonal structure to deliver a processor that is both powerful and flexible.
The MSP430 consumes less than 400 µA in active mode operating at 1 MHz
in a typical 3-V system and can wake up from a <2-µA standby mode to fully
synchronized operation in less than 6 µs. These exceptionally low current
requirements, combined with the fast wake-up time, enable a user to build a
system with minimum current consumption and maximum battery life.

Additionally, the MSP430x1xx family has an abundant mix of peripherals and
memory sizes enabling true system-on-a-chip designs. The peripherals
include a 12-bit A/D, slope A/D, multiple timers (some with capture/compare
registers and PWM output capability), on-chip clock generation, H/W
multiplier, USART(s), Watchdog Timer, GPIO, and others.

See http://www.ti.com for the latest device information and literature for the
MSP430 family.

Topic Page

1.1 Features and Capabilities 1-2.

1.2 11x Devices 1-3.

1.3 11x1 Devices 1-3.

1.4 11x2 Devices 1-4.

1.5 12x Devices 1-4.

1.6 12x2 Devices 1-4.

1.7 13x Devices 1-5.

1.8 14x Devices 1-5.

Chapter 1

Features and Capabilities

1-2

1.1 Features and Capabilities

The TI MSP430x1xx family of controllers has the following features and
capabilities:

� Ultralow-power architecture:
0.1– 250 µA nominal operating current @1 MHz
1.8 – 3.6 V operation (2.5–5.5 V for C11x, P11x, and E11x devices)
6 µs wake-up from standby mode
Extensive interrupt capability relieves need for polling

� Flexible and powerful processing capabilities:
Seven source-address modes
Four destination-address modes
Only 27 core instructions
Prioritized, nested interrupts
No interrupt or subroutine level limits
Large register file
Ram execution capability
Efficient table processing
Fast hex-to-decimal conversion

� Extensive, memory-mapped peripheral set including:
Integrated 12-bit A/D converter
Integrated precision comparator
Multiple timers and PWM capability
Slope A/D conversion (all devices)
Integrated USART(s)
Watchdog Timer
Multiple I/O with extensive interrupt capability
Integrated programmable oscillator
32-kHz crystal oscillator (all devices)
450-kHz – 8-MHz crystal oscillator (selected devices)

� Powerful, easy-to-use development tools including:
Simulator (including peripheral and interrupt simulation)
C compiler
Assembler
Linker
Emulators
Flash emulation tool
Device programmer
Application notes
Example code

11x Devices

1-3Introduction

� Versatile ultralow-power device options including:
Masked ROM
OTP (in-system programmable)
Flash (in-system programmable)
EPROM (UV-erasable, in-system programmable)
–40°C to +85°C operating temperature range
Up to 64K addressing space
Memory mixes to support all types of applications

1.2 11x Devices

The 11x devices contain the following peripherals:

� Basic Clock System (on-chip DCO + one crystal oscillator)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)

The 11x device family includes:

MSP430C111 2KB ROM, 128B RAM
MSP430C112 4KB ROM, 256B RAM
MSP430P112 4KB OTP, 256B RAM
PMS430E112 4KB EPROM, 256B RAM
MSP430F110 1KB +128B Flash, 128B RAM
MSP430F112 4KB +256B Flash, 256B RAM

1.3 11x1 Devices

The 11x1 devices contain the following peripherals:

� Basic Clock System (on-chip DCO + one crystal oscillator)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� Comparator_A (precision analog comparator, ideal for slope A/D

conversion)

The 11x1 device family includes:

MSP430C1111 2KB ROM, 128B RAM
MSP430C1121 4KB ROM, 256B RAM
MSP430F1101 1KB +128B Flash, 128B RAM
MSP430F1111 2KB +256B Flash, 256B RAM
MSP430F1121 4KB +256B Flash, 256B RAM

11x2 Devices†

1-4

1.4 11x2 Devices†

The 11x2 devices contain the following peripherals:

� Basic Clock System (on-chip DCO + one crystal oscillator)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� ADC10 (10-bit A/D)

The 11x2 device family includes:

MSP430F1122 4KB +256B Flash, 256B RAM
MSP430F1132 8KB +256B Flash, 256B RAM

1.5 12x Devices†

The 12x devices contain the following peripherals:

� Basic Clock System (on-chip DCO + one crystal oscillator)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� I/O Port3 (8 I/Os each)
� Comparator_A (precision analog comparator, ideal for slope A/D

conversion)
� USART0

The 12x device family includes:

MSP430F122 4KB +256B Flash, 256B RAM
MSP430F123 8KB +256B Flash, 256B RAM

1.6 12x2 Devices†

The 12x2 devices contain the following peripherals:

� Basic Clock System (on-chip DCO + one crystal oscillator)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� I/O Port3 (8 I/Os each)
� ADC10 (10-bit A/D)
� USART0

The 12x2 device family includes:

MSP430F1222 4KB +256B Flash, 256B RAM
MSP430F1232 8KB +256B Flash, 256B RAM

†Advanced information, future devices

13x Devices

1-5Introduction

1.7 13x Devices

The 13x devices contain the following peripherals:

� Basic Clock System (on-chip DCO + two crystal oscillators)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� Timer_B3 (16-bit timer with 3 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� I/O Port3, 4, 5, 6 (8 I/Os each)
� Comparator_A (precision analog comparator, ideal for slope A/D

conversion)
� ADC12 (12-bit A/D)
� USART0

The 13x device family includes:

MSP430F133 8KB +256B Flash, 256B RAM
MSP430F135 16KB +256B Flash, 512B RAM

1.8 14x Devices

The 14x devices contain the following peripherals:

� Basic Clock System (on-chip DCO + two crystal oscillators)
� Watchdog Timer/General Purpose Timer
� Timer_A3 (16-bit timer with 3 capture/compare registers and PWM output)
� Timer_B7 (16-bit timer with 7 capture/compare registers and PWM output)
� I/O Port1, 2 (8 I/Os each, all with interrupt)
� I/O Port3, 4, 5, 6 (8 I/Os each)
� Comparator_A (precision analog comparator, ideal for slope A/D

conversion)
� ADC12 (12-bit A/D)
� USART0
� USART1
� Hardware Multiplier

The 14x device family includes:

MSP430F147 32KB +256B Flash, 1KB RAM
MSP430F148 48KB +256B Flash, 2KB RAM
MSP430F149 60KB +256B Flash, 2KB RAM

1-6

2-1Architectural Overview

Architectural Overview

This section describes the basic functions of an MSP430-based system.

The MSP430 devices contain the following main elements:

� Central processing unit
� Program memory
� Data memory
� Operation control
� Peripheral modules
� Oscillator and clock generator

Topic Page

2.1 Introduction 2-2.

2.2 Central Processing Unit 2-2.

2.3 Program Memory 2-3.

2.4 Data Memory 2-3.

2.5 Operation Control 2-3.

2.6 Peripherals 2-4.

2.7 Oscillator and Clock Generator 2-4.

Chapter 2

Introduction

2-2

2.1 Introduction

The architecture of the MSP430 family is based on a memory-to-memory
architecture, a common address space for all functional blocks, and a reduced
instruction set applicable to all functional blocks as illustrated in Figure 2–1.
See specific device data sheets for complete block diagrams of individual
devices.

Figure 2–1. MSP430 System Configuration

Oscillator
System

ACLK

MCLK
Data I/O Port I/O Port I/O Port

CPU

Incl.

Bus
Conv.

Comparator USART USARTWatchdog

MAB, 16 Bit

MDB, 16 Bit

MAB, 4 Bit

MDB, 8 Bit

R/W

Timer_B

Clock

Misc.
Logic

Module Select

Program

16 Reg.

2.2 Central Processing Unit

The CPU incorporates a reduced and highly transparent instruction set and a
highly orthogonal design. It consists of a 16-bit arithmetic logic unit (ALU), 16
registers, and instruction control logic. Four of these registers are used for
special purposes. These are the program counter (PC), stack pointer (SP),
status register (SR), and constant generator (CGx). All registers, except the
constant-generator registers R3/CG2 and part of R2/CG1, can be accessed
using the complete instruction set. The constant generator supplies instruction
constants, and is not used for data storage. The addressing mode used on
CG1 separates the data from the constants.

The CPU control over the program counter, the status register, and the stack
pointer (with the reduced instruction set) allows the development of
applications with sophisticated addressing modes and software algorithms.

Program Memory

2-3Architectural Overview

2.3 Program Memory

Instruction fetches from program memory are always 16-bit accesses,
whereas data memory can be accessed using word (16-bit) or byte (8-bit)
instructions. Any access uses the 16-bit memory data bus (MDB) and as many
of the least-significant address lines of the memory address bus (MAB) as
required to access the memory locations. Blocks of memory are automatically
selected through module-enable signals. This technique reduces overall
current consumption. Program memory is integrated as programmable or
mask-programmed memory.

In addition to program code, data may also be placed in the ROM section of
the memory map and may be accessed using word or byte instructions; this
is useful for data tables, for example. This unique feature gives the MSP430
an advantage over other microcontrollers, because the data tables do not
have to be copied to RAM for usage.

Sixteen words of memory are reserved for reset and interrupt vectors at the
top of the 64-kilobytes address space from 0FFFFh down to 0FFE0h.

2.4 Data Memory

The data memory is connected to the CPU through the same two buses as the
program memory (ROM): the memory address bus (MAB) and the memory
data bus (MDB). The data memory can be accessed with full (word) data width
or with reduced (byte) data width.

Additionally, because the RAM and ROM are connected to the CPU via the
same busses, program code can be loaded into and executed from RAM. This
is another unique feature of the MSP430 devices, and provides valuable,
easy-to-use debugging capability.

2.5 Operation Control

The operation of the different MSP430 members is controlled mainly by the
information stored in the special–function registers (SFRs). The different bits
in the SFRs enable interrupts, provide information about the status of interrupt
flags, and define the operating modes of the peripherals. By disabling
peripherals that are not needed during an operation, total current consumption
can be reduced. The individual peripherals are described later in this manual.

Peripherals

2-4

2.6 Peripherals

Peripheral modules are connected to the CPU through the MAB, MDB, and
interrupt service and request lines. The MAB is usually a 5-bit bus for most of
the peripherals. The MDB is an 8-bit or 16-bit bus. Most of the peripherals
operate in byte format. Modules with an 8-bit data bus are connected by
bus-conversion circuitry to the 16-bit CPU. The data exchange with these
modules must be handled with byte instructions. The SFRs are also handled
with byte instructions. The operation for 8-bit peripherals follows the order
described in Figure 2–2.

Figure 2–2. Bus Connection of Modules/Peripherals

Module/Peripheral

MAB

MDB

Interrupt Request

Interrupt Bus Grant

Interrupt Request

Interrupt Bus Grant

PUC

2.7 Oscillator and Clock Generator

The LFXT1 oscillator is designed for the commonly used 32,768 Hz,
low-current- consumption clock crystal or to be used with a high-speed crystal.
All analog components for the 32,768 Hz oscillator are integrated into the
MSP430; only the crystal needs to be connected with no other external
components required. When using the LFXT1 oscillator with a high-speed
crystal, additional load capacitors are required. Some MSP430 devices have
an additional high-speed crystal oscillator (LFXT2). Refer to the clock chapter
and the specific device data sheets for details.

In addition to the crystal oscillator(s), all MSP430 devices contain a digitally-
controlled RC oscillator (DCO). The DCO is different from RC oscillators found
on other microcontrollers because it is digitally controllable and tuneable.

Clock source selection for peripherals and CPU is very flexible. Most
peripherals are capable of using the 32768-Hz crystal oscillator clock, the
high-speed crystal oscillator clock (where applicable), or the DCO clock. The
CPU is capable of executing from the DCO clock or from either of the two
crystal oscillator clocks. See Chapter 7 for details on the clock system.

3-1System Resets, Interrupts, and Operating Modes

System Resets, Interrupts,
and Operating Modes

This chapter discusses the MSP430x1xx system resets, interrupts, and
operating modes.

Topic Page

3.1 System Reset and Initialization 3-2.

3.2 Global Interrupt Structure 3-5.

3.3 MSP430 Interrupt-Priority Scheme 3-6.

3.4 Interrupt Processing 3-9.

3.5 Operating Modes 3-23.

3.6 Basic Hints for Low-Power Applications 3-29.

Chapter 3

System Reset and Initialization

3-2

3.1 System Reset and Initialization

3.1.1 Introduction

The MSP430 system reset circuitry (shown in Figure 3–1) sources two internal
reset signals: power-on reset (POR) and power-up clear (PUC). Different
events trigger these reset signals and different initial conditions exist
depending on which signal was generated.

Figure 3–1. Power-On Reset and Power-Up Clear Schematic

VCC

POR
Detect

VCC

POR
Latch

S
S
R

POR
Latch

S
S

R

Resetwd1

Resetwd2

S
S

DelayRST/MNI

NMI(WDTCTL.5)†

TMSEL†
WDTQn†

WDTIFG†

EQU†

MCLK

POR Delay

POR

PUC_DCO

PUC

† From watchdog timer peripheral module

0 V0 V0 V

KEYV

S

(from flash module)

A POR is a device reset. It is only generated by the two following events:

� Powering up the device

� A low signal on the RST/NMI pin when configured in the reset mode

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

� A POR signal

� Watchdog timer expiration (in watchdog mode only)

� Watchdog timer security key violation

� A low signal on the RST/NMI pin when configured in the reset mode

� A Flash memory security key violation

Note: Software PUC

If desired, software can cause a PUC by simply writing to the watchdog timer
control register with an incorrect password.

System Reset and Initialization

3-3System Resets, Interrupts, and Operating Modes

Note:

Generation of the POR/PUC signals does not necessarily generate a system
reset interrupt. Anytime a POR is activated, a system reset interrupt is
generated. However, when a PUC is activated, a system reset interrupt may
or may not be generated. Instead, a lower priority interrupt vector may be
generated, depending on what action caused the PUC. Each device data
sheet gives a detailed table of what action generates each interrupt. This
table should be consulted for the proper handling of all interrupts.

When the VCC supply provides a fast rise time as shown in Figure 3–2, the
POR delay provides enough active time on the POR signal to allow the signal
to initialize the circuitry correctly after power up. When the VCC rise time is
slow, as shown in Figure 3–3, the POR detector holds the POR signal active
until Vcc has risen above the V(POR) level. This also ensures a correct
initialization.

Figure 3–2. Power-On Reset Timing on Fast VCC Rise Time

t

VCC

POR

V

tPOR_Delay

If power to the chip is cycled, the supply voltage VCC must fall below the V(min)
(see Figure 3–3) to ensure that another POR signal occurs when VCC is
powered up again. If VCC does not fall below V(min) during a cycle or a glitch,
a POR is not generated and power-up conditions do not set correctly.

Figure 3–3. Power-on Reset Timing on Slow VCC Rise Time

VCC

POR

V

t

V
(POR)

V
(min)

POR
No POR

System Reset and Initialization

3-4

3.1.2 Device Initialization After System Reset

After a device reset (POR/PUC combination), the initial system conditions are:

� I/O pins switched to input mode.

� I/O flags are cleared as described in the I/O chapter.

� Other peripherals and registers are initialized as described in their
respective chapters.

� Status register is reset.

� Program counter is loaded with address contained at reset vector location
(0FFFEh). CPU execution begins at that address.

After a system reset, the user program can evaluate the various flags to
determine the source of the reset and take appropriate action.

The initial state of registers and peripherals is discussed in each applicable
section of this manual. Each register is shown with a key indicating the
accessibility of the register and the initial condition, for example, rw–(0), or
rw–0. In these examples, the r indicates read, the w indicates write, and the
value after the dash indicates the initial condition. If the value is in parenthesis,
the initial condition takes effect only after a POR – a PUC alone will not effect
the bit(s). If the value is not in parenthesis, it takes effect after a PUC alone or
after a POR/PUC combination. Some examples follow:

Type Description

rw–(0) Read/write, reset with POR

rw–0 Read/write, reset with POR or PUC

r–1 Read only, set with POR or PUC

r Read only, no initial state

w Write only, no initial state

Global Interrupt Structure

3-5System Resets, Interrupts, and Operating Modes

3.2 Global Interrupt Structure

There are four types of interrupts:

� System reset
� Maskable
� Non-maskable
� (Non)-maskable

System reset (POR/PUC) is discussed in section 3.1.

Maskable interrupts are caused by:
� A watchdog-timer overflow (if timer mode is selected)
� Other modules with interrupt capability

Non-maskable interrupts are not maskable in any way. No individual interrupt
enable bit is implemented for them, and the general interrupt enable bit (GIE)
has no effect on them.

(Non)-maskable interrupts are not masked by the general interrupt enable bit
(GIE) but are individually enabled or disabled by an individual interrupt enable
bit. When a (non)-maskable interrupt is accepted, the corresponding interrupt
enable bit is automatically reset, therefore disabling the interrupt for execution
of the interrupt service routine (ISR). The RETI (return from interrupt)
instruction has no effect on the individual enable bits of the (non)-maskable
interrupts. So the software must set the corresponding interrupt enable bit in
the ISR before execution of the RETI instruction for the interrupt to be
re-enabled after the ISR.

A (non)-maskable NMI interrupt can be generated by an edge on the RST/NMI
pin (if NMI mode is selected), an oscillator fault occurs (if the oscillator fault
interrupt is enabled), or an access violation to the flash memory takes place
(if the access violation interrupt is enabled).

MSP430 Interrupt-Priority Scheme

3-6

3.3 MSP430 Interrupt-Priority Scheme

The interrupt priority of the modules, as shown in Figure 3–4, is defined by the
arrangement of the modules in the connection chain: the nearer a module is
to the CPU/NMIRS, the higher the priority.

Figure 3–4. Interrupt Priority Scheme

Bus
Grant

Module
1

Module
2

WD
Timer

Module
m

Module
n

1 2 1 2 1 2 1 2 1
NMIRS

GIE
CPU

OSCfault

Reset/NMI

PUC

Circuit

PUC

WDT Security Key

Priority High
Low

MAB – 5LSBs

GMIRS

Flash Security Key

Flash ACCV

Reset and NMI, as shown in Figure 3–5, can only be used as alternative
interrupts because they use the same input pin. The associated control bits are
located in the watchdog timer control register shown in Figure 3–6, and are
password protected.

MSP430 Interrupt-Priority Scheme

3-7System Resets, Interrupts, and Operating Modes

Figure 3–5. Block Diagram of NMI Interrupt Sources

Flash Module

Flash Module

Flash Module

KEYV

System Reset
Generator

VCC

POR PUC

WDTQn EQU

PUC

POR

PUC POR

NMIRS

Clear

S
WDTIFG

IRQ

WDTIE

Clear
IE1.0

PUC

POR

IRQA

TMSEL

Counter

IFG1.0

NMITMSELNMIES

Watchdog Timer Module

Clear

S

IFG1.4

PUC

Clear

IE1.4

PUC

NMIFG

NMIIE

S

IFG1.1

Clear

IE1.1

PUC

OFIFG

OFIE

OSCFault

NMI_IRQA

IRQA: Interrupt Request Accepted

RST/NMI

S

FCTL1.1

Clear

IE1.5

ACCVIFG

ACCVIE

PUC

ACCV

WDT

MSP430 Interrupt-Priority Scheme

3-8

Figure 3–6. RST/NMI Mode Selection

NMIESHOLD NMI TMSEL CNTCL SSEL IS1 IS0
WDTCTL
0120h

rw-0 rw-0 rw-0 rw-0 (w)-0 rw-0 rw-0 rw-0

7 0

BITS 0–4,7 See Watchdog Timer chapter.

BIT 5: The NMI bit selects the function of the RST/NMI input pin. It is cleared after
a PUC signal.

NMI = 0: The RST/NMI input works as reset input. As long as the
RST/NMI pin is held low, the internal PUC signal is active
(level-sensitive).

NMI = 1: The RST/NMI input works as an edge-sensitive, nonmaskable
interrupt input.

BIT 6: This bit selects the activating edge of the RST/NMI input if the NMI function
is selected. It is cleared after a PUC signal.

NMIES = 0: A rising edge triggers an NMI interrupt.

NMIES = 1: A falling edge triggers an NMI interrupt.

3.3.1 Operation of Global Interrupt—Reset/NMI

If the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in word location
0FFFEh (reset vector).

If the RST/NMI pin is set to the NMI function, a signal edge (selected by the
NMIES bit) will generate an interrupt if the NMIIE bit is set. When accepted,
program execution begins at the address stored in location 0FFFCh. The RST/
NMI flag in the SFR IFG1.4 is also set.

Note:

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. When a PUC is generated (see section 3.1.1),
the PUC resets the bits in the WDTCTL register. This results in the RST/NMI
pin being configured in the reset mode. If the signal on the RST/NMI pin that
normally operates the NMI event holds the pin low, the processor will be held
in the reset state.

When NMI mode is selected and the NMI edge select bit is changed, an NMI
can be generated, depending on the actual level at RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

The NMI interrupt is maskable by the NMIIE bit.

Interrupt Processing

3-9System Resets, Interrupts, and Operating Modes

3.3.2 Operation of Global Interrupt—Oscillator Fault Control

The oscillator fault signal warns of a possible error condition with the crystal
oscillator.

3.3.2.1 Oscillator Fault Control in the Basic Clock System

The oscillator-fault signal is triggered when the LFXT1 oscillator is configured
to run in HF mode but is not running, stops running after being operational, or
is switched off. The oscillator-fault signal is also triggered under the same
conditions for the XT2 oscillator, present in some devices. Note that a PUC
signal can trigger an oscillator fault, because the PUC switches the LFXT1 to
LF mode, therefore switching off the HF mode. The PUC signal also switches
off the XT2 oscillator.

The oscillator fault signal can be enabled to generate an NMI by bit OFIE in
the SFRs. The interrupt flag OFIFG in the SFRs can then be tested by the
interrupt service routine to determine if the NMI was caused by an oscillator
fault. See Basic Clock Module chapter for more details on the operation of the
crystal oscillators LFXT1 and XT2.

3.4 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and
external interrupt configurations to meet real-time interrupt-driven system
requirements. Interrupts may be initiated by the processor’s operating
conditions such as watchdog overflow; or by peripheral modules or external
events. Each interrupt source can be disabled individually by an interrupt
enable bit, or all maskable interrupts can be disabled by the general interrupt
enable (GIE) bit in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit
and general interrupt enable (GIE) bit are set, the interrupt service routine
becomes active as follows:

1) CPU active: The currently executing instruction is completed.

2) CPU stopped: The low-power modes are terminated.

3) The program counter pointing to the next instruction is pushed onto the
stack.

4) The status register is pushed onto the stack.

5) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

6) The appropriate interrupt request flag resets automatically on single-
source flags. Multiple source flags remain set for servicing by software.

7) The GIE bit is reset; the CPUOff bit, the OscOff bit, and the SCG1 bit are
cleared; the status bits V, N, Z, and C are reset. SCG0 is left unchanged.

Interrupt Processing

3-10

8) The content of the appropriate interrupt vector is loaded into the program
counter: the program continues with the interrupt handling routine at that
address.

The interrupt latency is six cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the appropriate
interrupt-service routine first instruction, as shown in Figure 3–7.

Figure 3–7. Interrupt Processing

Item1

Item2SP TOS

Item1

Item2

SP TOS

PC

SR

Before
Interrupt

After
Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

which performs the following actions:

1) The status register with all previous settings pops from the stack. All
previous settings of GIE, CPUOFF, etc. are now in effect, regardless of the
settings utilized during the interrupt service routine.

2) The program counter pops from the stack and begins execution at the
point where it was interrupted.

The return from the interrupt is illustrated in Figure 3–8.

Figure 3–8. Return From Interrupt

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

A RETI instruction takes five cycles. Interrupt nesting is activated if the GIE bit
is set inside the interrupt handling routine. The GIE bit is located in status
register SR/R2, which is included in the CPU as shown in Figure 3–9.

Interrupt Processing

3-11System Resets, Interrupts, and Operating Modes

Figure 3–9. Status Register (SR)

SCG0 GIE Z C

rw-0

15 0

Reserved For Future Enhancements N
CPU
Off

OSC
OffSCG1V

8 7

Apart from the GIE bit, other sources of interrupt requests can be enabled/
disabled individually or in groups. The interrupt enable flags are located
together within two addresses of the special-function registers (SFRs). The
program-flow conditions on interrupt requests can be easily adjusted using the
interrupt enable masks. The hardware serves the highest priority within the
empowered interrupt source.

3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs)

Most of the interrupt control bits, interrupt flags, and interrupt enable bits are
collected in SFRs under a few addresses, as shown in Table 3–1. The SFRs
are located in the lower address range and are implemented in byte format.
SFRs must be accessed using byte instructions.

Table 3–1. Interrupt Control Bits in SFRs

Address 7 0

000Fh Not yet defined or implemented

000Eh Not yet defined or implemented

000Dh Not yet defined or implemented

000Ch Not yet defined or implemented

000Bh Not yet defined or implemented

000Ah Not yet defined or implemented

0009h Not yet defined or implemented

0008h Not yet defined or implemented

0007h Not yet defined or implemented

0006h Not yet defined or implemented

0005h Module enable 2 (ME2.x)

0004h Module enable 1 (ME1.x)

0003h Interrupt flag reg. 2 (IFG2.x)

0002h Interrupt flag reg. 1 (IFG1.x)

0001h Interrupt enable 2 (IE2.x)

0000h Interrupt enable 1 (IE1.x)

The Module Enable bits, Interrupt Enable bits, and Interrupt flags contained
in the SFRs are shown in the following tables.

Interrupt Processing

3-12

Table 3–2.MSP430x11xx Interrupt Enable Registers 1 and 2

Bit Position Short Form Initial State† Comments

IE1.0 WDTIE Reset Watchdog timer enable signal. Inactive if watchdog mode is
selected. Active if watchdog timer is configured as general-purpose
timer.

IE1.1 OFIE Reset Oscillator fault interrupt enable

IE1.2 Not implemented

IE1.3 Not implemented

IE1.4 NMIIE Reset NMI interrupt enable

IE1.5 ACCVIE Reset Flash access violation enable (flash devices only)

IE1.6 Not implemented

IE1.7 Not implemented

IE2.0 Not implemented

IE2.1 Not implemented

IE2.2 Not implemented

IE2.3 Not implemented

IE2.4 Not implemented

IE2.5 Not implemented

IE2.6 Not implemented

IE2.7 Not implemented
† The initial state is the logical state after the PUC signal.

Table 3–3.MSP430x12x Interrupt Enable Registers 1 and 2

Bit Position Short Form Initial State† Comments

IE1.0 WDTIE Reset Watchdog timer enable signal. Inactive if watchdog mode is
selected. Active if watchdog timer is configured as general-purpose
timer.

IE1.1 OFIE Reset Oscillator fault interrupt enable

IE1.2 Not implemented

IE1.3 Not implemented

IE1.4 NMIIE Reset NMI interrupt enable

IE1.5 ACCVIE Reset Flash access violation enable

IE1.6 Not implemented

IE1.7 Not implemented

IE2.0 URXIE0 Reset USART0 receive interrupt enable

IE2.1 UTXIE0 Reset USART0 transmit interrupt enable

IE2.2 Not implemented

IE2.3 Not implemented

IE2.4 Not implemented

IE2.5 Not implemented

IE2.6 Not implemented

IE2.7 Not implemented
† The initial state is the logical state after the PUC signal.

Interrupt Processing

3-13System Resets, Interrupts, and Operating Modes

Table 3–4.MSP430x13x Interrupt Enable Registers 1 and 2

Bit Position Short Form Initial State† Comments

IE1.0 WDTIE Reset Watchdog timer enable signal. Inactive if watchdog mode is
selected. Active if watchdog timer is configured as general-purpose
timer.

IE1.1 OFIE Reset Oscillator fault interrupt enable

IE1.2 Not implemented

IE1.3 Not implemented

IE1.4 NMIIE Reset NMI interrupt enable

IE1.5 ACCVIE Reset Flash access violation enable

IE1.6 URXIE0 Reset USART0 receive interrupt enable

IE1.7 UTXIE0 Reset USART0 transmit interrupt enable

IE2.0 Not implemented

IE2.1 Not implemented

IE2.2 Not implemented

IE2.3 Not implemented

IE2.4 Not implemented

IE2.5 Not implemented

IE2.6 Not implemented

IE2.7 Not implemented
† The initial state is the logical state after the PUC signal.

Table 3–5.MSP430x14x Interrupt Enable Registers 1 and 2

Bit Position Short Form Initial State† Comments

IE1.0 WDTIE Reset Watchdog timer enable signal. Inactive if watchdog mode is
selected. Active if watchdog timer is configured as general-purpose
timer.

IE1.1 OFIE Reset Oscillator fault interrupt enable

IE1.2 Not implemented

IE1.3 Not implemented

IE1.4 NMIIE Reset NMI interrupt enable

IE1.5 ACCVIE Reset Flash access violation enable

IE1.6 URXIE0 Reset USART0 receive interrupt enable

IE1.7 UTXIE0 Reset USART0 transmit interrupt enable

IE2.0 Not implemented

IE2.1 Not implemented

IE2.2 Not implemented

IE2.3 Not implemented

IE2.4 URXIE1 Reset USART1 receive interrupt enable

IE2.5 UTXIE1 Reset USART1 transmit interrupt enable

IE2.6 Not implemented

IE2.7 Not implemented
† The initial state is the logical state after the PUC signal.

Interrupt Processing

3-14

Table 3–6.MSP430x11xx Interrupt Flag Registers 1 and 2

Bit Position Short Form Initial State Comments

IFG1.0 WDTIFG Set Set on watchdog timer overflow in watchdog mode or security key
violation.

Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin
in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 Not implemented

IFG1.3 Not implemented

IFG1.4 NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Not implemented

IFG1.6 Not implemented

IFG1.7 Not implemented

IFG2.0 Not implemented

IFG2.1 Not implemented

IFG2.2 Not implemented

IFG2.3 Not implemented

IFG2.4 Not implemented

IFG2.5 Not implemented

IFG2.6 Not implemented

IFG2.7 Not implemented

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-15System Resets, Interrupts, and Operating Modes

Table 3–7.MSP430x12x Interrupt Flag Registers 1 and 2

Bit Position Short Form Initial State Comments

IFG1.0 WDTIFG Set Set on watchdog timer overflow in watchdog mode or security key
violation.

Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin
in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 Not implemented

IFG1.3 Not implemented

IFG1.4 NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Not implemented

IFG1.6 Not implemented

IFG1.7 Not implemented

IFG2.0 URXIFG0 Reset USART0 receive flag

IFG2.1 UTXIFG0 Set USART0 transmitter ready

IFG2.2 Not implemented

IFG2.3 Not implemented

IFG2.4 Not implemented

IFG2.5 Not implemented

IFG2.6 Not implemented

IFG2.7 Not implemented

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-16

Table 3–8.MSP430x13x Interrupt Flag Registers 1 and 2

Bit Position Short Form Initial State Comments

IFG1.0 WDTIFG Set Set on watchdog timer overflow in watchdog mode or security key
violation.

Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin
in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 Not implemented

IFG1.3 Not implemented

IFG1.4 NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Not implemented

IFG1.6 URXIFG0 Reset USART0 receive flag

IFG1.7 UTXIFG0 Set USART0 transmitter ready

IFG2.0 Not implemented

IFG2.1 Not implemented

IFG2.2 Not implemented

IFG2.3 Not implemented

IFG2.4 Not implemented

IFG2.5 Not implemented

IFG2.6 Not implemented

IFG2.7 Not implemented

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-17System Resets, Interrupts, and Operating Modes

Table 3–9.MSP430x14x Interrupt Flag Registers 1 and 2

Bit Position Short Form Initial State Comments

IFG1.0 WDTIFG Set Set on watchdog timer overflow in watchdog mode or security key
violation.

Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin
in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 Not implemented

IFG1.3 Not implemented

IFG1.4 NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Not implemented

IFG1.6 URXIFG0 Reset USART0 receive flag

IFG1.7 UTXIFG0 Set USART0 transmitter ready

IFG2.0 Not implemented

IFG2.1 Not implemented

IFG2.2 Not implemented

IFG2.3 Not implemented

IFG2.4 URXIFG1 Reset USART1 receive flag

IFG2.5 UTXIFG1 Set USART1 transmitter ready

IFG2.6 Not implemented

IFG2.7 Not implemented

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-18

Table 3–10.MSP430x11xx Module Enable Registers 1 and 2

Bit Position Short Form Initial State Comments

ME1.0 Reserved

ME1.1 Reserved

ME1.2 Reserved

ME1.3 Reserved

ME1.4 Reserved

ME1.5 Reserved

ME1.6 Reserved

ME1.7 Reserved

ME2.0 Reserved

ME2.1 Reserved

ME2.2 Reserved

ME2.3 Reserved

ME2.4 Reserved

ME2.5 Reserved

ME2.6 Reserved

ME2.7 Reserved

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Table 3–11. MSP430x12x Module Enable Registers 1 and 2

Bit Position Short Form Initial State Comments

ME1.0 Reserved

ME1.1 Reserved

ME1.2 Reserved

ME1.3 Reserved

ME1.4 Reserved

ME1.5 Reserved

ME1.6 Reserved

ME1.7 Reserved

ME2.0 URXE0
USPIE0

Reset
Reset

USART0 receiver enable (UART mode)
USART0 transmit and receive enable (SPI mode)

ME2.1 UTXE0 Reset USART0 transmit enable (UART mode)

ME2.2 Reserved

ME2.3 Reserved

ME2.4 Reserved

ME2.5 Reserved

ME2.6 Reserved

ME2.7 Reserved

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-19System Resets, Interrupts, and Operating Modes

Table 3–12.MSP430x13x Module Enable Registers 1 and 2

Bit Position Short Form Initial State Comments

ME1.0 Reserved

ME1.1 Reserved

ME1.2 Reserved

ME1.3 Reserved

ME1.4 Reserved

ME1.5 Reserved

ME1.6 URXE0
USPIE0

Reset
Reset

USART0 receiver enable (UART mode)
USART0 transmit and receive enable (SPI mode)

ME1.7 UTXE0 Reset USART0 transmit enable (UART mode)

ME2.0 Reserved

ME2.1 Reserved

ME2.2 Reserved

ME2.3 Reserved

ME2.4 Reserved

ME2.5 Reserved

ME2.6 Reserved

ME2.7 Reserved

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Table 3–13.MSP430x14x Module Enable Registers 1 and 2

Bit Position Short Form Initial State Comments

ME1.0 Reserved

ME1.1 Reserved

ME1.2 Reserved

ME1.3 Reserved

ME1.4 Reserved

ME1.5 Reserved

ME1.6 URXE0
USPIE0

Reset
Reset

USART0 receiver enable (UART mode)
USART0 transmit and receive enable (SPI mode)

ME1.7 UTXE0 Reset USART0 transmit enable (UART mode)

ME2.0 Reserved

ME2.1 Reserved

ME2.2 Reserved

ME2.3 Reserved

ME2.4 URXE1
USPIE1

Reset
Reset

USART1 receiver enable (UART mode)
USART1 transmit and receive enable (SPI mode)

ME2.5 UTXE1 Reset USART1 transmit enable (UART mode)

ME2.6 Reserved

ME2.7 Reserved

Note: The configuration of some MSP430 devices may differ from those in above table. Refer to specific device data sheets for
individual configurations.

Interrupt Processing

3-20

3.4.2 Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the
address range 0FFFFh – 0FFE0h as described in Tables 3–14 through 3–16.
The vector contains the 16-bit address of the appropriate interrupt handler
instruction sequence. The interrupt vectors for ’1xx devices are shown in the
following tables. See also the specific device’s data sheet.

Table 3–14.Interrupt Sources,Flags, and Vectors of MSP430x11xx Configurations

INTERRUPT SOURCE INTERRUPT FLAG
SYSTEM

INTERRUPT
WORD

ADDRESS PRIORITY

Power-up, external reset,
watchdog

WDTIFG (Note1)
KEYV (see Note 1)

Reset 0FFFEh 15, highest

NMI, oscillator fault, flash
memory access violation

NMIIFG (see Notes 1 and 4)
OFIFG (see Notes 1 and 4)
ACCVIFG (see Notes 1, 4, and 5)

(non)-maskable,
(non)-maskable,
(non)-maskable

0FFFCh 14

0FFFAh 13

0FFF8h 12

Comparator_A CAIFG (see Note 6) maskable 0FFF6h 11

Watchdog timer WDTIFG maskable 0FFF4h 10

Timer_A CCIFG0 (see Note 2) maskable 0FFF2h 9

Timer_A
CCIFG1, CCIFG2, TAIFG
(see Notes 1 and 2)

maskable 0FFF0h 8

0FFEEh 7

0FFECh 6

0FFEAh 5

0FFE8h 4

I/O Port P2 (eight flags –
see Note 3)

P2IFG.0 to P2IFG.7
(see Notes 1 and 2)

maskable 0FFE6h 3

I/O Port P1 (eight flags)
P1IFG.0 to P1IFG.7
(see Notes 1 and 2)

maskable 0FFE4h 2

0FFE2h 1

0FFE0h 0, lowest

NOTES: 1. Multiple source flags
2. Interrupt flags are located in the module
3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0–5) are implemented on the 11x1 devices.
4. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable

cannot.
Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.

5. Flash devices only
6. MSP430x11x1 devices only

Interrupt Processing

3-21System Resets, Interrupts, and Operating Modes

Table 3–15.Interrupt Sources,Flags, and Vectors of MSP430x12x Configurations

INTERRUPT SOURCE INTERRUPT FLAG
SYSTEM

INTERRUPT
WORD

ADDRESS PRIORITY

Power-up, external reset,
watchdog

WDTIFG (see Note 7)
KEYV (see Note 7)

Reset 0FFFEh 15, highest

NMI, oscillator fault, flash
memory access violation

NMIIFG (see Notes 7 and 10)
OFIFG (see Notes 7 and 10)
ACCVIFG (see Notes 7 and 10)

(non)-maskable,
(non)-maskable,
(non)-maskable

0FFFCh 14

0FFFAh 13

0FFF8h 12

Comparator_A CAIFG maskable 0FFF6h 11

Watchdog timer WDTIFG maskable 0FFF4h 10

Timer_A CCIFG0 (see Note 8) maskable 0FFF2h 9

Timer_A
CCIFG1, CCIFG2, TAIFG
(see Notes 7 and 8)

maskable 0FFF0h 8

USART0 receive URXIFG0 maskable 0FFEEh 7

USART0 transmit UTXIFG0 maskable 0FFECh 6

0FFEAh 5

0FFE8h 4

I/O Port P2 (eight flags –
see Note 9)

P2IFG.0 to P2IFG.7
(see Notes 7 and 8)

maskable 0FFE6h 3

I/O Port P1 (eight flags)
P1IFG.0 to P1IFG.7
(see Notes 7 and 8)

maskable 0FFE4h 2

0FFE2h 1

0FFE0h 0, lowest

NOTES: 7. Multiple source flags
8. Interrupt flags are located in the module
9. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0–5) are implemented on the 11x1 devices.

10. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable
cannot.

Interrupt Processing

3-22

Table 3–16.Interrupt Sources, Flags, and Vectors of MSP430x13x and MSP430x14x
Configurations

INTERRUPT SOURCE INTERRUPT FLAG SYSTEM
INTERRUPT

WORD
ADDRESS

PRIORITY

Power-up
External Reset

Watchdog
Flash memory

WDTIFG
KEYV

(see Note 11)

Reset 0FFFEh 15, highest

NMI
Oscillator Fault

Flash memory access violation

NMIIFG (see Notes 11 & 13)
OFIFG (see Notes 11 & 13)

ACCVIFG (see Notes 11 & 13)

(Non)maskable
(Non)maskable
(Non)maskable

0FFFCh 14

Timer_B7 BCCIFG0 (see Note 12) Maskable 0FFFAh 13

Timer_B7
BCCIFG1 to BCCIFG6

TBIFG (see Notes 11 & 12)
Maskable 0FFF8h 12

Comparator_A CAIFG Maskable 0FFF6h 11

Watchdog timer WDTIFG Maskable 0FFF4h 10

USART0 receive URXIFG0 Maskable 0FFF2h 9

USART0 transmit UTXIFG0 Maskable 0FFF0h 8

ADC ADCIFG (see Notes 11 & 12) Maskable 0FFEEh 7

Timer_A3 CCIFG0 (see Note 12) Maskable 0FFECh 6

Timer_A3
CCIFG1,
CCIFG2,

TAIFG (see Notes 11 & 12)
Maskable 0FFEAh 5

I/O port P1 (eight flags)
P1IFG.0 (see Notes 11 & 12)

To
P1IFG.7 (see Notes 11 & 12)

Maskable 0FFE8h 4

USART1 receive URXIFG1 (see Note 14) Maskable 0FFE6h 3

USART1 transmit UTXIFG1 (see Note 14) Maskable 0FFE4h 2

I/O port P2 (eight flags)
P2IFG.0 (see Notes 11 & 12)

To
P2IFG.7 (see Notes 11 & 12)

Maskable 0FFE2h 1

0FFE0h 0, lowest

NOTES: 11. Multiple source flags
12. Interrupt flags are located in the module.
13. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable

can not disable it.
14. MSP430x14x devices only

Note: Some MSP430 devices have different implementations, See device datasheet for details.

3.4.2.1 External Interrupts

All eight bits of ports P1 and P2 are designed for interrupt processing of
external events. All individual I/O bits are independently programmable. Any
combinations of inputs, outputs, and interrupt conditions are possible. This
allows easy adaptation to different I/O configurations. See Chapter I/O Ports
for more details on I/O ports.

Operating Modes

3-23System Resets, Interrupts, and Operating Modes

3.5 Operating Modes

The MSP430 family was developed for ultralow-power applications and uses
different levels of operating modes. The MSP430 operating modes, shown in
Figure 3–10, give advanced support to various requirements for ultralow
power and ultralow energy consumption. This support is combined with an
intelligent management of operations during the different module and CPU
states. An interrupt event wakes the system from each of the various operating
modes and the RETI instruction returns operation to the mode that was
selected before the interrupt event.

The ultralow power system design which uses complementary metal-oxide
semiconductor (CMOS) technology, takes into account three different needs:

� The desire for speed and data throughput despite conflicting needs for
ultra-low power

� Minimization of individual current consumption

� Limitation of the activity state to the minimum required by the use of low
power modes

There are four bits that control the CPU and the main parts of the operation
of the system clock generator: CPUOff, OscOff, SCG0, and SCG1. These four
bits support discontinuous active mode (AM) requests, to limit the time period
of the full operating mode, and are located in the status register. The major
advantage of including the operating mode bits in the status register is that the
present state of the operating condition is saved onto the stack during an
interrupt service request. As long as the stored status register information is
not altered, the processor continues (after RETI) with the same operating
mode as before the interrupt event. Another program flow may be selected by
manipulating the data stored on the stack or the stack pointer. Being able to
access the stack and stack pointer with the instruction set allows the program
structures to be individually optimized, as illustrated in the following program
flow:

� Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens
the MSP430:

� The SR and PC are stored on the stack, with the content present at the
interrupt event.

� Subsequently, the operation mode control bits OscOff, SCG1, and
CPUOff are cleared automatically in the status register.

Operating Modes

3-24

� Return from interrupt

Two different modes are available to return from the interrupt service routine
and continue the flow of operation:

� Return with low-power mode bits set. When returning from the
interrupt, the program counter points to the next instruction. The
instruction pointed to is not executed, since the restored low power
mode stops CPU activity.

� Return with low-power mode bits reset. When returning from the
interrupt, the program continues at the address following the
instruction that set the OscOff or CPUOff-bit in the status register. To
use this mode, the interrupt service routine must reset the OscOff,
CPUOff, SCGO, and SCG1 bits on the stack. Then, when the SR
contents are popped from the stack upon RETI, the operating mode
will be active mode (AM).

There are six operating modes that the software can configure:

� Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0:
CPU clocks are active

� Low power mode 0 (LPM0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:
CPU is disabled
MCLK is disabled
SMCLK and ACLK remain active

� Low power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled
MCLK is disabled
DCO’s dc generator is disabled if the DCO is not used for MCLK or
 SMCLK when in active mode. Otherwise, it remains enabled.
SMCLK and ACLK remain active

Operating Modes

3-25System Resets, Interrupts, and Operating Modes

� Low power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:
CPU is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator automatically disabled because it is not needed for MCLK
 or SMCLK
DCO’s dc-generator remains enabled
ACLK remains active

� Low power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:
CPU is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
ACLK remains active

� Low power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:
CPU is disabled
ACLK is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped

Note:

Peripheral operation is not halted by CPUOff. Peripherals are controlled by
their individual control registers.

Operating Modes

3-26

Table 3–17.Low Power Mode Logic Chart for Basic Clock System

SCG1 SCG0 OscOff CPUOff

LPM0 0 0 0 1

LPM1 0 1 0 1

LPM2 1 0 0 1

LPM3 1 1 0 1

LPM4 1 1 1 1

These modes are illustrated in Figure 3–11.

Figure 3–10. MSP430x1xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Various Modules Are Active

LP Mode LPM0
CPU Off, MCLK Off,
SMCLK, ACLK On

CPUOff = 1
SCG0,1 = 0

CPUOff = 1
SCG0 = 1
SCG1 = 0

LP Mode LPM2
CPU Off, MCLK Off,

SMCLK Off, DCO Off,
ACLK On

CPUOff = 1
SCG0 = 0
SCG1 = 1

LP Mode LPM3
CPU Off, MCLK Off,
SMCLK Off, DCO Off

ACLK On

CPUOff = 1
SCG0,1 = 1

DC Generator Off

LP-Mode LPM4
CPU Off, MCLK Off,
DCO Off, ACLK Off

DC Generator Off

CPUOff = 1
OscOff = 1
SG0,1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT Active,
Time Expired, Overflow

WDTIFG = 1
WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LP Mode LPM1
CPU Off, MCLK Off,
SMCLK, ACLK On

DC Generator Off if DCO
not used in active mode

Operating Modes

3-27System Resets, Interrupts, and Operating Modes

Figure 3–11. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

315

AM

340

270

225
180
135
90
45

0
LPM0 LPM2 LPM3 LPM4

225

70 65
17 11 2 1 0.1 0.1

VCC = 3 V
VCC = 2.2 V

Operating Modes

Aµ
IC

C
/

The low-power modes 1–4 enable or disable the CPU and the clocks. In
addition to the CPU and clocks, enabling or disabling specific peripherals may
further reduce total current consumption of the individual modes. The activity
state of each peripheral is controlled by the control registers for the individual
peripherals. In addition, the SFRs include module enable bits that may be used
to enable or disable the operation of specific peripheral modules (see
Table 3–4).

3.5.1 Low-Power Mode 0 and 1 (LPM0 and LPM1)

Low power mode 0 or 1 is selected if bit CPUOff in the status register is set.
Immediately after the bit is set the CPU stops operation, and the normal
operation of the system core stops. The operation of the CPU halts and all
internal bus activities stop until an interrupt request or reset occurs. The
system clock generator continues operation, and the clock signals MCLK,
SMCLK, and ACLK stay active depending on the state of the other three status
register bits, SCG0, SCG1, and OscOff.

The peripherals are enabled or disabled with their individual control register
settings, and with the module enable registers in the SFRs. All I/O port pins
and RAM/registers are unchanged. Wake up is possible through all enabled
interrupts.

The following are examples of entering and exiting LPM0. The method shown
is applicable to all low-power modes.

The following example describes entering into low-power mode 0.

;===Main program flow with switch to CPUOff Mode==============

;
BIS #18h,SR ;Enter LPM0 + enable general interrupt GIE

;(CPUOff=1, GIE=1). The PC is incremented

;during execution of this instruction and
;points to the consecutive program step.

...... ;The program continues here if the CPUOff
;bit is reset during the interrupt service

;routine. Otherwise, the PC retains its
;value and the processor returns to LPM0.

Operating Modes

3-28

The following example describes clearing low-power mode 0.

;===Interrupt service routine=================================

...... ;CPU is active while handling interrupts
BIC #10h,0(SP) ;Clears the CPUOff bit in the SR contents

;that were stored on the stack.

RETI ;RETI restores the CPU to the active state
;because the SR values that are stored on
;the stack were manipulated. This occurs
;because the SR is pushed onto the stack

;upon an interrupt, then restored from the
;stack after the RETI instruction.

3.5.2 Low-Power Modes 2 and 3 (LPM2 and LPM3)

Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status
register are set. Immediately after the bits are set, CPU, MCLK, and SMCLK
operations halt and all internal bus activities stop until an interrupt request or
reset occurs.

Peripherals that operate with the MCLK or SMCLK signal are inactive because
the clock signals are inactive. Peripherals that operate with the ACLK signal
are active or inactive according with the individual control registers and the
module enable bits in the SFRs. All I/O port pins and the RAM/registers are
unchanged. Wake up is possible by enabled interrupts coming from active
peripherals or RST/NMI.

3.5.3 Low-Power Mode 4 (LPM4)

In low power mode 4 all activities cease; only the RAM contents, I/O ports, and
registers are maintained. Wake up is only possible by enabled external
interrupts.

Before activating LPM4, the software should consider the system conditions
during the low power mode period . The two most important conditions are
environmental (that is, temperature effect on the DCO), and the clocked
operation conditions.

The environment defines whether the value of the frequency integrator should
be held or corrected. A correction should be made when ambient conditions
are anticipated to change drastically enough to increase or decrease the
system frequency while the device is in LPM4.

Basic Hints for Low-Power Applications

3-29System Resets, Interrupts, and Operating Modes

3.6 Basic Hints for Low-Power Applications

There are some basic practices to follow when current consumption is a critical
part of a system application:

� Switch off analog circuitry when possible.

� Select the lowest possible operating frequency for the core and the
individual peripheral module.

� Use the interrupt driven software; the program starts execution rapidly.

� Tie all unused inputs to an applicable voltage level. The list below defines
the correct termination for all unused pins.

Pin Potential Comment

� AVCC DVCC

� AVSS DVSS

� Xout Open

� VREF+ Open

� VeREF+ DVSS

� VREF–/VeREF– DVSS

� XIN DVSS

� XT2IN DVSS 13x and 14x devices

� XT2OUT Open 13x and 14x devices

� Px.0 to Px.7 Open Unused ports switched to port function and
output direction

� RST/NMI DVCC or VCC Pullup resistor 100k

� Test/VPP DVSS 11x devices

� Test DVSS 11x1 devices

� TDO

� TDI: Refer to device specific datasheets for the correct termina-

� TMS tion of these pins.

� TCK

3-30

4-1Memory

Memory

MSP430 devices are configured as a von-Neumann architecture. It has code
memory, data memory, and peripherals in one address space. As a result, the
same instructions are used for code, data, or peripheral accesses. Also, code
may be executed from RAM.

Topic Page

4.1 Introduction 4-2.

4.2 Data in the Memory 4-3.

4.3 Internal ROM Organization 4-4.

4.4 RAM and Peripheral Organization 4-6.

Chapter 4

Introduction

4-2

4.1 Introduction

All of the physically separated memory areas (ROM, RAM, SFRs, and
peripheral modules) are mapped into the common address space, as shown
in Figure 4–1 for the MSP430 family. The addressable memory space is 64KB.
Future expansion is possible.

Figure 4–1. Memory Map of Basic Address Space

Address
(Hex.)

0FFE0h
Interrupt Vector Table

Program Memory
Branch Control Tables

Data Tables...

Data Memory

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

0FFFFh

0FFDFh

0200h

01FFh

0100h
0FFh

010h
0Fh

0h

Function

ROM

ROM

RAM

Timer,
ADC, . . .

I/O, LCD
8bT/C, . . .

SFR

Access

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

The memory data bus (MDB) is 16- or 8-bits wide. For those modules that can
be accessed with word data the width is always 16 bits. For the other modules,
the width is 8 bits, and they must be accessed using byte instructions only. The
program memory (ROM) and the data memory (RAM) can be accessed with
byte or word instructions.

Figure 4–2. Memory Data Bus

High Byte
Data Bus

SFRs COMPARATOR_A

LCD USART ROM RAM

ADC WDT

CPU

Low Byte

Address Range 0000h – 00FFh

8-Bit Peripheral Modules,
Byte Access

Byte/Word
Access

16-Bit Peripheral Modules,
Word Access

Data in the Memory

4-3Memory

4.2 Data in the Memory

Bytes are located at even or odd addresses as shown in Figure 4–3. However,
words are only located at even addresses. Therefore, when using word
instructions, only even addresses may be used. The low byte of a word is
always at an even address. The high byte of a word is at the next odd address
after the address of the word. For example, if a data word is located at address
xxx2h, then the low byte of that data word is located at address xxx2h, and the
high byte of that word is located at address xxx3h.

Figure 4–3. Bits, Bytes, and Words in a Byte-Organized Memory

15

7

14

6

. . Bits . .

. . Bits . .

9

1

8

0

Byte

Byte

Word (High Byte)

Word (Low Byte)

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Internal ROM Organization

4-4

4.3 Internal ROM Organization

Various sizes of ROM (OTP, masked-ROM, EPROM, or FLASH) are available
within the 64-kB address space, as shown in Figure 4–4. The common
address space is shared with SFRs, peripheral module registers, data and
code memory. The SFRs and peripheral modules are mapped into the address
range, starting with 0 and ending with 01FFh. The remaining address space,
0200h to 0FFFFh, is shared by data and code memory. The start address for
ROM depends on the amount of ROM present. The interrupt vector table is
mapped into the the upper 16 words of ROM address space, with the highest
priority interrupt vector at the highest ROM word address (0FFFEh). See the
individual data sheets for specific memory maps.

Figure 4–4. ROM Organization

4 k

12 k

0FFFEh

0F000h

0EFFFh

0D000h

0CFFFh

08000h

32 k

xx k

VectorsVectorsVectors Vectors Vectors
0FFE0h

4.3.1 Processing of ROM Tables

The MSP430 architecture allows for the storage and usage of large tables in
ROM without the need to copy the tables to RAM before using them. This ROM
accessing of tables allows fast and clear programming in applications where
data tables are necessary. This offers the flexible advantages listed below, and
saves on ROM and RAM requirements. To access these tables, all word and
byte instructions can be used.

� ROM storage of an output programmable logic array (OPLA) for display
character conversion

� The use of as many OPLA terms as needed (no restriction on n terms)

� OTP version automatically includes OPLA programmability

� Computed table accessibility (for example, for a bar graph display)

� Table-supported program flows

Internal ROM Organization

4-5Memory

4.3.2 Computed Branches and Calls

Computed branches and subroutine calls are possible using standard
instructions. The call and branch instructions use the same addressing modes
as the other instructions.

The addressing modes allow indirect-indirect addressing that is ideally suited
for computed branches and calls. This programming technique permits a
program structure that is different from conventional 8- and 16-bit
microcontrollers. Most of the routines can be handled easily by using software
status handling instead of flag-type program-flow control.

The computed branch and subroutine calls are valid throughout the entire
ROM space.

RAM and Peripheral Organization

4-6

4.4 RAM and Peripheral Organization

The entire RAM can be accessed with byte or word instructions using the
appropriate instruction suffix. The peripheral modules, however, are located
in two different address spaces and must be accessed with the appropriate
instruction length.

� The SFRs are byte-oriented and mapped into the address space from 0h
up to 0Fh.

� Peripheral modules that are byte-oriented are mapped into the address
space from 010h up to 0FFh.

� Peripheral modules that are word-oriented are mapped into the address
space from 100h up to 01FFh.

4.4.1 Random Access Memory

RAM can be used for both code and data memory. Code accesses are always
performed on even byte addresses.

The instruction mnemonic suffix defines the data as being word or byte data.

Example:

MOV.B TXDATA,&UTXBUF0 ;Byte access

ADD R5,SUM_A = ADD.W R5,SUM_A ;Word access

ADDC SUM_B = ADDC.W SUM_A ;Word access

A word consists of two bytes: a high byte (bit 15 to bit 8), and a low byte
(bit 7 to bit 0) as shown in Figure 4–5. It must always align to an even address.

Figure 4–5. Byte and Word Operation

Byte1: 012h

Word1 (High Byte): 056h

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Byte2: 034h

Word1 (Low Byte): 078h

Word2 (High Byte): 09Ah

Word2 (Low Byte): 0BCh

ADD.B Byte1, Byte2:
Byte2 = 012h + 034h = 046h

ADD.W Word1, Word2:
Word2 = 05678h + 09ABCh = 0F134h

All operations on the stack and PC are word operations and use even-aligned
memory addresses.

RAM and Peripheral Organization

4-7Memory

In the following examples, word-to-word and byte-to-byte operations show the
results of the operation and the status bit information.

Example Word-Word Operation Example Byte-Byte Operation

R5 = 0F28Eh R5 = 0223h

EDE .EQU 0212h EDE .EQU 0202h

Mem(0F28Eh) = 0FFFEh Mem(0223h) = 05Fh

Mem(0212h) = 00112h Mem(0202h) = 043h

ADD @R5,&EDE ADD.B @R5,&EDE

Mem(0212h) = 00110h Mem(0202h) = 0A2h

C = 1, Z = 0, N = 0 C = 0, Z = 0, N = 1

Figure 4–6 shows the register-byte and byte-register operations.

Figure 4–6. Register-Byte/Byte-Register Operations

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

The two following examples describe the register-byte and byte-register
operations.

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh 05Fh

+ 012h + 002h ;Low byte of R5

0A1h 00061h ;–>Store into R5

;High byte is 0

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

 + (Addressed byte) + (Low byte of register)

–>(Addressed byte) –>(Low byte of register,
 zero to High byte)

RAM and Peripheral Organization

4-8

Note: Word-Byte Operations

Word-byte or byte-word operations on memory data are not supported. Each
register-byte or byte-register is performed as a byte operation.

4.4.2 Peripheral Modules—Address Allocation

Some peripheral modules are accessible only with byte instructions, while
others are accessible only with word instructions. The address space from
0100 to 01FFh is reserved for word modules, and the address space from 00h
to 0FFh is reserved for byte modules.

Peripheral modules that are mapped into the word address space must be
accessed using word instructions (for example, MOV R5,&WDTCTL).
Peripheral modules that are mapped into the byte address space must be
accessed with byte instructions (MOV.B #1,&P1OUT).

The addressing of both is through the absolute addressing mode or the 16-bit
working registers using the indexed, indirect, or indirect autoincrement
addressing mode. See Figure 4–7 for the RAM/peripheral organization.

Figure 4–7. Example of RAM/Peripheral Organization

Address
(Hex.)

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

7 0

01FFh

0100h
0FFh

010h
0Fh

0h

Function

Timer,
ADC, . . .

I/O, USART
Comparator_A, . . .

SFR

Access

Word

Byte

Byte

4.4.2.1 Word Modules

Word modules are peripherals that are connected to the 16-bit MDB.

Word modules can be accessed with word or byte instructions. If byte
instructions are used, only even addresses are permissible, and the high byte
of the result is always 0.

The peripheral file address space is organized into sixteen frames with each
frame representing eight words as described in Table 4–1.

RAM and Peripheral Organization

4-9Memory

Table 4–1.Peripheral File Address Map—Word Modules

Address Description

1F0h – 1FFh Reserved

1E0h – 1EFh Reserved

1D0h – 1DFH Reserved

1C0h – 1CFH Reserved

1B0h – 1BFH Reserved

1A0h – 1AFH ADC12 control and interrupt

190h – 19FH Timer_B

180h – 18FH Timer_B

170h – 17FH Timer_A

160h – 16FH Timer_A

150h – 15FH ADC12 conversion

140h – 14FH ADC12 conversion

130h – 13FH Multiplier

120h – 12FH Watchdog Timer, Flash control

110h – 11FH Reserved

100h – 10FH Reserved

4.4.2.2 Byte Modules

Byte modules are peripherals that are connected to the reduced (eight LSB)
MDB. Access to byte modules is always by byte instructions. The hardware
in the peripheral byte modules takes the low byte (the LSBs) during a write
operation.

Byte instructions operate on byte modules without any restrictions. Read
access to peripheral byte modules using word instructions results in
unpredictable data in the high byte. Word data is written into a byte module by
writing the low byte to the appropriate peripheral register and ignoring the high
byte.

The peripheral file address space is organized into sixteen frames as
described in Table 4–2.

RAM and Peripheral Organization

4-10

Table 4–2.Peripheral File Address Map—Byte Modules

Address Description

00F0h – 00FFh Reserved

00E0h – 00EFh Reserved

00D0h – 00DFh Reserved

00C0h – 00CFh Reserved

00B0h – 00BFh Reserved

00A0h – 00AFh Reserved

0090h – 009Fh Reserved

0080h – 008Fh ADC12 memory control

0070h – 007Fh USART0, USART1

0060h – 006Fh Reserved

0050h – 005Fh System clock generator, Comparator A

0040h – 004Fh Reserved

0030h – 003Fh Digital I/O port P5, digital I/O port P6

0020h – 002Fh Digital I/O port P1 and P2 control

0010h – 001Fh Digital I/O port P3, and P4 control

0000h – 000Fh Special function

4.4.3 Peripheral Modules-Special Function Registers (SFRs)

The system configuration and the individual reaction of the peripheral modules
to the processor operation is configured in the SFRs as described in
Table 4–3. The SFRs are located in the lower address range, and are
organized by bytes. SFRs must be accessed using byte instructions only.

RAM and Peripheral Organization

4-11Memory

Table 4–3.Special Function Register Address Map

Address Data Bus

7 0

000Fh Not yet defined or implemented

000Eh Not yet defined or implemented

000Dh Not yet defined or implemented

000Ch Not yet defined or implemented

000Bh Not yet defined or implemented

000Ah Not yet defined or implemented

0009h Not yet defined or implemented

0008h Not yet defined or implemented

0007h Not yet defined or implemented

0006h Not yet defined or implemented

0005h Module enable 2; ME2.2

0004h Module enable 1; ME1.1

0003h Interrupt flag reg. 2; IFG2.x

0002h Interrupt flag reg.1; IFG1.x

0001h Interrupt enable 2; IE2.x

0000h Interrupt enable 1; IE1.x

The system power consumption is influenced by the number of enabled
modules and their functions. Disabling a module from the actual operation
mode reduces power consumption while other parts of the controller remain
fully active (unused pins must be tied appropriately or power consumption will
increase; see Basic Hints for Low Power Applications in section 3.6.

4-12

5-116-Bit CPU

16-Bit CPU

The MSP430 von-Neumann architecture has RAM, ROM, and peripherals in
one address space, both using a single address and data bus. This allows
using the same instruction to access either RAM, ROM, or peripherals and
also allows code execution from RAM.

Topic Page

5.1 CPU Registers 5-2.

5.2 Addressing Modes 5-7.

5.3 Instruction Set Overview 5-18.

5.4 Instruction Map 5-24.

Chapter 5

CPU Registers

5-2

5.1 CPU Registers

Sixteen 16-bit registers (R0, R1, and R4 to R15) are used for data and
addresses and are implemented in the CPU. They can address up to
64 Kbytes (ROM, RAM, peripherals, etc.) without any segmentation. The
complete CPU-register set is described in Table 5–1. Registers R0, R1, R2,
and R3 have dedicated functions, which are described in detail later.

Table 5–1.Register by Functions
Program counter (PC) R0

Stack pointer (SP) R1

Status register (SR)
R2

Constant generator (CG1)
R2

Constant generator (CG2) R3

Working register R4 R4

Working register R5 R5

: :
: :

Working register R13 R13

Working register R14 R14

Working register R15 R15

5.1.1 The Program Counter (PC)

The 16-bit program counter points to the next instruction to be executed. Each
instruction uses an even number of bytes (two, four, or six), and the program
counter is incremented accordingly. Instruction accesses are performed on
word boundaries, and the program counter is aligned to even addresses.
Figure 5–1 shows the program counter bits.

Figure 5–1. Program Counter

0

15 0

Program Counter Bits 15 to 1

1

5.1.2 The System Stack Pointer (SP)

The system stack pointer must always be aligned to even addresses because
the stack is accessed with word data during an interrupt request service. The
system SP is used by the CPU to store the return addresses of subroutine calls
and interrupts. It uses a predecrement, postincrement scheme. The
advantage of this scheme is that the item on the top of the stack is available.
The SP can be used by the user software (PUSH and POP instructions), but
the user should remember that the CPU also uses the SP. Figure 5–2 shows
the system SP bits.

Figure 5–2. System Stack Pointer

0

15 0

System Stack Pointer Bits 15 to 1

1

CPU Registers

5-316-Bit CPU

5.1.2.1 Examples for System SP Addressing (Refer to Figure 5–4)

MOV SP,R4 ; SP –> R4

MOV @SP,R5 ; Item I3 (TOS) –> R5

MOV 2(SP),R6 ; Item I2 –> R6

MOV R7,0(SP) ; Overwrite TOS with R7

MOV R8,4(SP) ; Modify item I1

PUSH R12 ; Store R12 in address 0xxxh – 6; SP points
; to same address

POP R12 ; Restore R12 from address 0xxxh – 6; SP
; points to 0xxxh – 4

MOV @SP+,R5 ; Item I3 –> R5 (popped from stack); same as
; POP instruction

Figure 5–3 shows stack usage.

Figure 5–3. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh – 2

0xxxh – 4

0xxxh – 6

0xxxh – 8

I1

I2

SP

#1 SP

I1

I2

I3 SP

PUSH #1 POP R8Address

5.1.2.2 Special Cases—PUSH SP and POP SP

The special cases of using the SP as an argument to the PUSH and POP
instructions are described below.

Figure 5–4. PUSH SP and POP SP

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a PUSH SP, POP
SP instruction sequence. The POP SP instruction
places SP1 into the stack pointer SP (SP2=SP1)

After the sequence

PUSH SP
I
I

; SP1 is stack pointer after this instruction

POP SP ; SP2 is stack pointer after this instruction

The stack pointer is two bytes lower than before this sequence.

CPU Registers

5-4

5.1.3 The Status Register (SR)

The status register SR contains the following CPU status bits:

� V Overflow bit
� SCG1 System clock generator control bit 1
� SCG0 System clock generator control bit 0
� OscOff Crystal oscillator off bit
� CPUOff CPU off bit
� GIE General interrupt enable bit
� N Negative bit
� Z Zero bit
� C Carry bit

Figure 5–5 shows the SR bits.

Figure 5–5. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved For Future Enhancements N
CPU
Off

OSC
OffSCG1V

8 79

Table 5–2 describes the status register bits.

Table 5–2.Description of Status Register Bits

Bit Description

V Overflow bit. Set if the result of an arithmetic operation overflows the signed-variable range. The
bit is valid for both data formats, byte and word:

ADD(.B), ADDC(.B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive, otherwise reset

SUB(.B), SUBC(.B), CMP(.B) Set when:
Positive – Negative = Negative
Negative – Positive = Positive, otherwise reset

SCG1, SCG0 These bits control four activity states of the system-clock generator and therefore influence the
operation of the processor system.

OscOFF If set, the crystal oscillator enters off mode: all activities cease; however, the RAM contents, the
port, and the registers are maintained. Wake up is possible only through enabled external
interrupts when the GIE bit is set and from the NMI.

CPU Off If set, the CPU enters off mode: program execution stops. However, the RAM, the port registers,
and especially the enabled peripherals (for example, Timer_A, UART, etc.) stay active. Wake
up is possible through all enabled interrupts.

GIE If set, all enabled maskable interrupts are handled. If reset, all maskable interrupts are disabled.
The GIE bit is cleared by interrupts and restored by the RETI instruction as well as by other
appropriate instructions.

N Set if the result of an operation is negative.
Word operation: Negative bit is set to the value of bit 15 of the result
Byte operation: Negative bit is set to the value of bit 7 of the result

Z Set if the result of byte or word operation is 0; cleared if the result is not 0.

C Set if the result of an operation produced a carry; cleared if no carry occurred. Some instructions
modify the carry bit using the inverted zero bits.

CPU Registers

5-516-Bit CPU

Note: Status Register Bits V, N, Z, and C

The status register bits V, N, Z, and C are modified only with the appropriate
instruction. For additional information, see the detailed description of the
instruction set in Appendix B.

5.1.4 The Constant Generator Registers CG1 and CG2

Commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constant used for immediate values is defined by the addressing
mode bits (As) as described in Table 5–3. See Section 5.3 for a description of
the addressing mode bits (As).

Table 5–3.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 – – – – – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh –1, word processing

The major advantages of this type of constant generation are:

� No special instructions required
� Reduced code memory requirements: no additional word for the six most

used constants
� Reduced instruction cycle time: no code memory access to retrieve the

constant

The assembler uses the constant generator automatically if one of the six
constants is used as a source operand in the immediate addressing mode.
The status register SR/R2, used as a source or destination register, can be
used in the register mode only. The remaining combinations of
addressing-mode bits are used to support absolute-address modes and bit
processing without any additional code. Registers R2 and R3, used in the
constant mode, cannot be addressed explicitly; they act like source-only
registers.

CPU Registers

5-6

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst
or the equivalent
MOV #0,dst

where #0 is replaced by the assembler, and R3 is used with As = 00, which
results in:

� One word instruction

� No additional control operation or hardware within the CPU

� Register-addressing mode for source: no additional fetch cycle for the
constant (#0)

Addressing Modes

5-716-Bit CPU

5.2 Addressing Modes

All seven addressing modes for the source operand and all four addressing
modes for the destination operand can address the complete address space.
The bit numbers in Table 5–4 describe the contents of the As and Ad mode bits.
See Section 5.3 for a description of the source address As and the destination
address Ad bits.

Table 5–4.Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand

X is stored in the next word

01/1 Symbolic mode ADDR (PC + X) points to the operand

X is stored in the next word.
Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address.

10/– Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/– Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards.

11/– Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Addressing Modes

5-8

5.2.1 Register Mode

The register mode is described in Table 5–5.

Table 5–5.Register Mode Description

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

0A023hR10

R11

Before: After:

PC

0FA15h

PCold

0A023hR10

R11

PC PCold + 2

0A023h

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

Addressing Modes

5-916-Bit CPU

5.2.2 Indexed Mode

The indexed mode is described in Table 5–6.

Table 5–6. Indexed Mode Description

Assembler Code Content of ROM

MOV 2(R5),6(R6) MOV X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV 2(R5),6(R6):

00006h

Address
Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch
+0006h
01092h

01080h
+0002h
01082h

Register
Before:

00006h

Address
Space

00002h

04596h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh

Addressing Modes

5-10

5.2.3 Symbolic Mode

The symbolic mode is described in Table 5–7.

Table 5–7.Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV X(PC),Y(PC)

X = EDE – PC

Y = TONI – PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC + Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Comment: Valid for source and destination

Example: MOV EDE,TONI ;Source address EDE = 0F016h,
;dest. address TONI=01114h

011FEh

Address
Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

0FF14h
+0F102h

0F016h

0FF16h
+011FEh

01114h

Register
Before:

011FEh

Address
Space

0F102h

04090h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

Addressing Modes

5-1116-Bit CPU

5.2.4 Absolute Mode

The absolute mode is described in Table 5–8.

Table 5–8.Absolute Mode Description

Assembler Code Content of ROM

MOV &EDE,&TONI MOV X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV &EDE,&TONI ;Source address EDE = 0F016h,
;dest. address TONI=01114h

01114h

Address
Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address
Space

0F016h

04292h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

Addressing Modes

5-12

5.2.5 Indirect Mode

The indirect mode is described in table 5–9.

Table 5–9. Indirect Mode Description

Assembler Code Content of ROM

MOV @R10,0(R11) MOV @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd).

Example: MOV.B @R10,0(R11)

0000h

Address
Space

04AEBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address
Space

04AEBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h

Addressing Modes

5-1316-Bit CPU

5.2.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 5–10.

Table 5–10.Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

00000h

Address
Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address
Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h
00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 5–6.

Figure 5–6. Operand Fetch Operation

Instruction Address Operand

+1/ +2

Addressing Modes

5-14

5.2.7 Immediate Mode

The immediate mode is described in Table 5–11.

Table 5–11. Immediate Mode Description

Assembler Code Content of ROM

MOV #45h,TONI MOV @PC+,X(PC)

45

X = TONI – PC

Length: Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Comment: Valid only for a source operand.

Example: MOV #45h,TONI

01192h

Address
Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h
+01192h
010A8h

Register
Before:

01192h

Address
Space

00045h

040B0h

PC

0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h

Addressing Modes

5-1516-Bit CPU

5.2.8 Clock Cycles, Length of Instruction

The operating speed of the CPU depends on the instruction format and
addressing modes. The number of clock cycles refers to the MCLK.

5.2.8.1 Format-I Instructions (Double Operand)

Table 5–12 describes the CPU format-I instructions and addressing modes.

Table 5–12.Instruction Format I and Addressing Modes

Address Mode No. of Length of Example

As Ad Cycles Instruction

00, Rn 0, Rm
0, PC

1
2

1
1

MOV
BR

R5,R8
R9

00, Rn 1, x(Rm)
1, EDE
1, &EDE

4 2
2
2

ADD
XOR
MOV

R5,3(R6)
R8,EDE
R5,&EDE

01, x(Rn)
01, EDE
01, &EDE

0, Rm 3 2
2
2

MOV
AND
MOV

2(R5),R7
EDE,R6
&EDE,R8

01, x(Rn)
01, EDE
01, &EDE

1, x(Rm)
1, TONI
1, &TONI

6 3
3
3
3

ADD
CMP
MOV
ADD

3(R4),6(R9)
EDE,TONI
2(R5),&TONI
EDE,&TONI

10, @Rn 0, Rm 2 1 AND @R4,R5

10, @Rn 1, x(Rm)
1, EDE
1, &EDE

5 2
2
2

XOR
MOV
XOR

@R5,8(R6)
@R5,EDE
@R5,&EDE

11, @Rn+

11, #N

0, Rm
0, PC
0, Rm
0, PC

2
3
2
3

1
1
2
2

ADD
BR
MOV
BR

@R5+,R6
@R9+
#20,R9
#2AEh

11, @Rn+
11, #N
11, @Rn+
11, #N

1, x(Rm)
1, EDE
1, &EDE

5 2
3
2
3

MOV
ADD
MOV
ADD

@R9+,2(R4)
#33,EDE
@R9+,&EDE
#33,&EDE

Table 5–13 shows a simple way to determine CPU instruction cycles for
Format–I (double operand) instructions.

Table 5–13.Execution Cycles for Double Operand Instructions

Destination Addressing Mode

Source Addressing Mode Rm

x(Rm)
Symbolic

Absolute (&)

Rn 1† 4

@Rn, @Rn+, #N 2† 5

x(Rn), Symbolic, Absolute (&) 3 6

 †: Add one cycle if Rm is the PC

EXAMPLE: the instruction ADD #500h,16(R5) needs 5 cycles for the
execution.

Addressing Modes

5-16

5.2.8.2 Format-II Instructions (Single Operand)

Table 5–14 describes the CPU format II instructions and addressing modes.

Table 5–14.Instruction Format-II and Addressing Modes

No. of Cycles

Address Mode
A(s/d)

RRA
RRC

SWPB
SXT

PUSH/
CALL

Length of
Instruction

(words) Example

00, Rn 1 3/4 1 SWPB R5

01, X(Rn)
01, EDE
01, &EDE

4
4

5
5

2
2

CALL 2(R7)
PUSH EDE
SXT &EDE

10, @Rn 3 4 1 RRC @R9

11, @Rn+
(see Note)
11, #N

3 4/5 1

2

SWPB @R10+
CALL #81H

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode will result
in an unpredictable program operation.

Table 5–15 shows a simple way to determine CPU instruction cycles for
Format–II (single operand) instructions.

Table 5–15.Execution Cycles for Single Operand Instructions

Instruction

Addressing Mode

SWPB
SXT
RRA
RRC PUSH CALL

Rn 1 3 4

@Rn 3 4 4

@Rn+, #N 3 4 5

x(Rn), Symbolic, Absolute (&) 4 5 5

Example: the instruction PUSH #500h needs 4 cycles for the execution.

5.2.8.3 Format-III Instructions (Jump)

Format-III instructions are described as follows:

Jxx—all instructions need the same number of cycles, independent of
whether a jump is taken or not.
Clock cycle: Two cycles
Length of instruction: One word

5.2.8.4 Miscellaneous-Format Instructions

Table 5–16 describes miscellaneous-format instructions.

Addressing Modes

5-1716-Bit CPU

Table 5–16.Miscellaneous Instructions or Operations

Activity Clock Cycle

RETI 5 cycles
1 word†

Interrupt 6 cycles

WDT reset 4 cycles

Reset (RST/NMI) 4 cycles
† Length of instruction

Instruction Set Overview

5-18

5.3 Instruction Set Overview

This section gives a short overview of the instruction set. The addressing
modes are described in Section 5.2.

Instructions are either single or dual operand or jump.

The source and destination parts of an instruction are defined by the following
fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writeable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

Instruction Set Overview

5-1916-Bit CPU

5.3.1 Double-Operand (Format I) Instructions

Figure 5–7 illustrates the double-operand instruction format. See section 5.2.8
for information on number of code words and execution cycles per instruction.

Figure 5–7. Double Operand Instruction Format

B/W D-Reg

15 0

Opcode AdS-Reg

8 714 13 12 11 10 9 6 5 4 3 2 1

As

Table 5–17 describes the effects of an instruction on double operand
instruction status bits.

Table 5–17.Double Operand Instruction Format Results

Mnemonic S-Reg, D-Reg Operation Status Bits

V N Z C

MOV src,dst src –> dst – – – –

ADD src,dst src + dst –> dst * * * *

ADDC src,dst src + dst + C –> dst * * * *

SUB src,dst dst + .not.src + 1 –> dst * * * *

SUBC src,dst dst + .not.src + C –> dst * * * *

CMP src,dst dst – src * * * *

DADD src,dst src + dst + C –> dst (dec) * * * *

AND src,dst src .and. dst –> dst 0 * * *

BIT src,dst src .and. dst 0 * * *

BIC src,dst .not.src .and. dst –> dst – – – –

BIS src,dst src .or. dst –> dst – – – –

XOR src,dst src .xor. dst –> dst * * * *

* The status bit is affected

– The status bit is not affected

0 The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

Instruction Set Overview

5-20

5.3.2 Single-Operand (Format II) Instructions

Figure 5–8 illustrates the single-operand instruction format. See section 5.2.8
for information on number of code words and execution cycles per instruction.

Figure 5–8. Single Operand Instruction Format

B/W D/S-Reg

15 0

Opcode

8 714 13 12 11 10 9 6 5 4 3 2 1

Ad

Table 5–18 describes the effects of an instruction on the single operand
instruction status bits.

Table 5–18.Single Operand Instruction Format Results

Mnemonic S-Reg, D-Reg Operation Status Bits

V N Z C

RRC dst C –> MSB –>.......LSB –> C * * * *

RRA dst MSB –> MSB –>....LSB –> C 0 * * *

PUSH src SP – 2 –> SP, src –> @ SP – – – –

SWPB dst Swap bytes – – – –

CALL dst SP – 2 –> SP – – – –

PC+2 –> stack, dst –> PC

RETI TOS –> SR, SP <– SP + 2 X X X X

TOS –> PC, SP <– SP + 2

SXT dst Bit 7 –> Bit 8........Bit 15 0 * * *

* The status bit is affected

– The status bit is not affected

0 The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode X (RN) is used, the word that follows contains the address
information.

Instruction Set Overview

5-2116-Bit CPU

5.3.3 Conditional Jumps

Conditional jumps support program branching relative to the program counter.
The possible jump range is from –511 to +512 words relative to the program
counter state of the jump instruction. The 10-bit program-counter offset value
is treated as a signed 10-bit value that is doubled and added to the program
counter. None of the jump instructions affect the status bits.

The instruction code fetch and the program counter increment technique end
with the formula:

PCnew = PCold + 2 + PCoffset × 2

Figure 5–9 shows the conditional-jump instruction format.

Figure 5–9. Conditional-Jump Instruction Format

C 10-Bit PC Offset

15 0

Opcode

8 714 13 12 11 10 9 6 5 4 3 2 1

Table 5–19 describes these conditional-jump instructions.

Table 5–19.Conditional-Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

Instruction Set Overview

5-22

5.3.4 Short Form of Emulated Instructions

The basic instruction set, together with the register implementations of the
program counter, stack pointer, status register, and constant generator, form
the emulated instruction set; these make up the popular instruction set. The
status bits are set according to the result of the execution of the basic
instruction that replaces the emulated instruction.

Table 5–20 describes these instructions.

Table 5–20.Emulated Instructions

Mnemonic Description Status Bits Emulation

V N Z C

ArIthmetic Instructions

ADC[.W] dst Add carry to destination * * * * ADDC #0,dst

ADC.B dst Add carry to destination * * * * ADDC.B #0,dst

DADC[.W] dst Add carry decimal to destination * * * * DADD #0,dst

DADC.B dst Add carry decimal to destination * * * * DADD.B #0,dst

DEC[.W] dst Decrement destination * * * * SUB #1,dst

DEC.B dst Decrement destination * * * * SUB.B #1,dst

DECD[.W] dst Double-decrement destination * * * * SUB #2,dst

DECD.B dst Double-decrement destination * * * * SUB.B #2,dst

INC[.W] dst Increment destination * * * * ADD #1,dst

INC.B dst Increment destination * * * * ADD.B #1,dst

INCD[.W] dst Increment destination * * * * ADD #2,dst

INCD.B dst Increment destination * * * * ADD.B #2,dst

SBC[.W] dst Subtract carry from destination * * * * SUBC #0,dst

SBC.B dst Subtract carry from destination * * * * SUBC.B #0,dst

Logical Instructions

INV[.W] dst Invert destination * * * * XOR #0FFFFh,dst

INV.B dst Invert destination * * * * XOR.B #–1,dst

RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst

RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst

RLC[.W] dst Rotate left through carry * * * * ADDC dst,dst

RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data Instructions (common use)

CLR[.W] Clear destination – – – – MOV #0,dst

CLR.B Clear destination – – – – MOV.B #0,dst

CLRC Clear carry bit – – – 0 BIC #1,SR

CLRN Clear negative bit – 0 – – BIC #4,SR

CLRZ Clear zero bit – – 0 – BIC #2,SR

POP dst Item from stack – – – – MOV @SP+,dst

SETC Set carry bit – – – 1 BIS #1,SR

SETN Set negative bit – 1 – – BIS #4,SR

SETZ Set zero bit – – 1 – BIS #2,SR

Instruction Set Overview

5-2316-Bit CPU

Table 5–20. Emulated Instructions (Continued)

Mnemonic Description Status Bits Emulation

V N Z C

Data Instructions (common use) (continued)

TST[.W] dst Test destination 0 * * * CMP #0,dst

TST.B dst Test destination 0 * * * CMP.B #0,dst

Program Flow Instructions

BR dst Branch to . . . – – – – MOV dst,PC

DINT Disable interrupt – – – – BIC #8,SR

EINT Enable interrupt – – – – BIS #8,SR

NOP No operation – – – – MOV #0h,#0h

RET Return from subroutine – – – – MOV @SP+,PC

5.3.5 Miscellaneous

Instructions without operands, such as CPUOff, are not provided. Their
functions are switched on or off by setting or clearing the function bits in the
status register or the appropriate I/O register. Other functions are emulated
using dual operand instructions.

Some examples are as follows:

BIS #28h,SR ; Enter OscOff mode

; + Enable general interrupt (GIE)

BIS #18h,SR ; Enter CPUOff mode

; + Enable general interrupt (GIE)

Instruction Map

5-24

5.4 Instruction Map

The instruction map in Figure 5–10 is an example of how to encode
instructions. There is room for more instructions, if needed. See section 5.2.8
for information on number of code words and execution cycles per instruction.

Figure 5–10. Core Instruction Map

0x
04x
08x
0Cx
10x
14x
18x
1Cx
20x
24x
28x
2Cx
30x
34x
38x
3Cx

4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

F
or

m
at

 II
F

or
m

at
 II

I
F

or
m

at
 I

6-1Hardware Multiplier

Hardware Multiplier

The hardware multiplier is a 16-bit peripheral module. It is not integrated into
the CPU. Therefore, it requires no special instructions and operates
independent of the CPU. To use the hardware multiplier, the operands are
loaded into registers and the results are available the next instruction—no
extra cycles are required for a multiplication.

Topic Page

6.1 Hardware Multiplier Module Support 6-2.

6.2 Hardware Multiplier Operation 6-3.

6.3 Hardware Multiplier Registers 6-9.

6.4 Hardware Multiplier Special Function Bits 6-10.

6.5 Hardware Multiplier Software Restrictions 6-10.

Chapter 6

Hardware Multiplier Module Support

6-2

6.1 Hardware Multiplier Module Support

The hardware multiplier module expands the capabilities of the MSP430
family without changing the basic architecture. Multiplication is possible for:

� 16×16 bits
� 16×8 bits
� 8×16 bits
� 8×8 bits

The hardware multiplier module supports four types of multiplication: unsigned
multiplication (MPY), signed multiplication (MPYS), unsigned multiplication
with accumulation (MAC), and signed multiplication with accumulation
(MACS). Figure 6–1 shows how the hardware multiplier module interfaces
with the bus system to support multiplication operations.

Figure 6–1. Connection of the Hardware Multiplier Module to the Bus System

ROM RAM

CPU

Incl. 16 Reg.

Test

JTAG

MPY

MPYS

MAC

MAB, 16 Bit

MDB, 16 Bit

TDI

TDO

TMS

TCK

Other
Modules

MACS

Hardware Multiplier Operation

6-3Hardware Multiplier

6.2 Hardware Multiplier Operation

The hardware multiplier has two 16-bit registers for both operands and three
registers to store the results of the multiplication. The multiplication is
executed correctly when the first operand is written to the operand register
OP1 prior to writing the second operand to OP2. Writing the first operand to
the applicable register selects the type of multiplication. Writing the second
operand to OP2 starts the multiplication. Multiplication is completed before the
result registers are accessed using the indexed address mode for the source
operand. When indirect or indirect autoincrement address modes are used,
another instruction is needed between the writing of the second operand and
accessing the result registers. Both operands, OP1 and OP2, utilize all seven
address mode capabilities.

No instruction is necessary for the multiplication; as a result, the real-time
operation does not require additional clock cycles and the interrupt latency is
unchanged.

The multiplier architecture is illustrated in Figure 6–2.

Figure 6–2. Block Diagram of the MSP430 16 × 16-Bit Hardware Multiplier

MAC, MACS

MPY 130h

MACS 136h

MAC 134h

MPYS 132h Operand 1 Operand 2 138h

Product Register

16 x 16 Multiplier

32-Bit Adder

32-Bit Multiplexer

Accumulator ACCSumExt 13Eh C

Multiplexer

SumLo 013AhSumHi 13Ch
S

Operand 1
(address

defines
operation)

0rw15

0rw15 0rw15

031

0rw150rw150r15

0000

MACS
MPYS MACMPY

Accessible Register

Mode Mode

MPY, MPYS

Mode

Hardware Multiplier Operation

6-4

The sum extension register contents differ, depending on the operation and
on the results of the operation.

Table 6–1.Sum Extension Register Contents

Register MPY MPYS MAC MACS, see Notes

Operand1 x + – + + (OP1×OP2 +
ACC) ≤

(OP1×OP2 +
ACC) >

(OP1×OP2 +
ACC) >

(OP1×OP2 +
ACC) ≤

Operand2 x + – – –
ACC) ≤
0FFFFFFFFh

ACC) >
0FFFFFFFFh

ACC) >
07FFFFFFFh

ACC) ≤
07FFFFFFFh

SumExt 0000h 0000h 0FFFFh 0000h 0001h 0FFFFh 0000h

Note: The following two overflow conditions may occur when using the MACS function and should be handled by software or
avoided.

1) The result of a MACS operation is positive and larger than 07FFF FFFFh. In this case, the SumExt register contains
0FFFFh and the ACC register contains a negative number (8000 0000h 0FFFF FFFFh).

2) The result of a MACS operation is negative and less than or equal to 07FFF FFFFh. In this case, the SumExt register
contains 0000h and the ACC register contains a positive number (0000 0000h ... 07FFF FFFFh).

Hardware Multiplier Operation

6-5Hardware Multiplier

6.2.1 Multiply Unsigned, 16×16 bit, 16× 8 bit, 8× 16 bit, 8 × 8 bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16 ×16 bit multiplication).

**
* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
* HARDWARE MULTIPLIER MODULE *
* USE CONSTANT OPERAND1 AND OPERAND2 TO IDENTIFY *
* BYTE DATA *
**

OPERAND1 .EQU 0 ; 0: OPERAND1 IS WORD (16BIT)
; 8: OPERAND1 IS BYTE (8BIT)

OPERAND2 .EQU 0 ; 0: OPERAND2 IS WORD (16BIT)
; 8: OPERAND2 IS BYTE (8BIT)

MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS .EQU 0136H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=8
MOV.B &OPER1,&MPY ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

.ELSE
MOV &OPER1,&MPY ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

.ENDIF

.IF OPERAND1=8
MOV.B &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ELSE
MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ENDIF

**
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE *
* MULTIPLICATION TO THE RAM DATA, 64BITS *
**

ADD &RESLO,&RAM ; ADD LOW RESULT TO RAM
ADDC &RESHI,&RAM+2 ; ADD HIGH RESULT TO RAM+2
ADC &RAM+4 ; ADD CARRY TO EXTENSION WORD
ADC &RAM+6 ; IF 64 BIT LENGTH IS USED

Hardware Multiplier Operation

6-6

6.2.2 Multiply Signed, 16×16 bit, 16×8 bit, 8×16 bit, 8×8 bit

The following multiplication operation shows 36 bytes of program code and 36
execution cycles (16×16 bit multiplication).

**
* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
* HARDWARE MULTIPLIER MODULE *
* IF ONE OF THE OPERANDS IS 8 BIT, SIGN EXTENSION *
* is NEEDED. USE CONSTANT OPERAND1 AND OPERAND2 TO *
* IDENTIFY BYTE DATA *
**

OPERAND1 .EQU 0 ; 0: OPERAND1 IS WORD (16BIT)
; 8: OPERAND1 IS BYTE (8BIT)

OPERAND2 .EQU 0 ; 0: OPERAND2 IS WORD (16BIT)
; 8: OPERAND2 IS BYTE (8BIT)

MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS .EQU 0136H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT.EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=0
MOV &OPER1,&MPYS ; LOAD 1ST (WORD) OPERAND,

; DEFINES ADD. SIGNED MULTIPLY

.ELSE
MOV.B &OPER1,&MPYS ; LOAD 1ST (BYTE) OPERAND,

; DEFINES ADD. SIGNED MULTIPLY
SXT &MPYS ; EXPAND BYTE TO SIGNED WORD DATA
.ENDIF
.IF OPERAND2=0
MOV &OPER2,&OP2 ; LOAD 2ND (WORD) OPERAND AND

; START SIGNED MULTIPLICATION

.ELSE
MOV.B &OPER2,&OP2 ; LOAD 2ND (BYTE) OPERAND,
SXT &OP2 ; RE–LOAD 2ND OPERAND AND START

; SIGNED ‘FINAL’ MULTIPLICATION

.ENDIF

**
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE *
* MULTIPLICATION TO THE RAM DATA, 64 BITS *
**

ADD &RESLO,&RAM ; ADD LOW RESULT TO RAM
ADDC &RESHI,&RAM+2 ; ADD HIGH RESULT TO RAM+2
ADDC &SUMEXT,&RAM+4; ADD SIGN WORD TO EXTENSION WORD
ADDC &SUMEXT,&RAM+6; IF 64 BIT LENGTH IS USED

Hardware Multiplier Operation

6-7Hardware Multiplier

6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16X16-bit multiplication).

**
* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
* HARDWARE MULTIPLIER MODULE *
* THE RESULT OF THE MULTIPLICATION IS ADDED TO THE *
* CONTENT OF BOTH RESULT REGISTERS, RESLO AND RESHI *
* USE CONSTANT OPERAND1 AND OPERAND2 TO IDENTIFY *
* BYTE DATA *
**

OPERAND1 .EQU 0 ; 0: OPERAND1 IS WORD (16BIT)
; 8: OPERAND1 IS BYTE (8BIT)

OPERAND2 .EQU 0 ; 0: OPERAND2 IS WORD (16BIT)
; 8: OPERAND2 IS BYTE (8BIT)

MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS .EQU 0136H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=8
MOV.B &OPER1,&MAC ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

.ELSE
MOV &OPER1,&MAC ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

.ENDIF

.IF OPERAND1=8
MOV.B &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ELSE
MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ENDIF

**
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE *
* MULTIPLICATION TO THE RAM DATA, 64BITS *
* THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO*
* AND RESHI REGISTERS. THE UPPER TWO WORDS IN THE *
* EXAMPLE ARE FURTHER LOCATED IN THEIR RAM LOCATION*
**

ADDC &SUMEXT,&RAM+4 ; ADD SUMEXTENSTION TO RAM+4
ADC &RAM+6 ; IF 64 BIT LENGTH IS USED

Hardware Multiplier Operation

6-8

6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit
**
* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE *

* MULTIPLIER MODULE *

* USE CONSTANT OPERAND1 AND OPERAND 2 TO IDENTIFY BYTE DATA *
**
OPERAND1 .EQU 0 ; 0: OPERAND1 IS WORD (16BIT)

; 8: OPERAND1 IS BYTE (8BIT)

OPERAND2 .EQU 0 ; 0: OPERAND2 IS WORD (16BIT)

; 8: OPERAND2 IS BYTE (8BIT)

MPY .EQU 0130H

MPYS .EQU 0132H

MAC .EQU 0134H

MACS .EQU 0136H

OP2 .EQU 0138H

RESLO .EQU 013AH

RESHI .EQU 013CH

SUMEXT .EQU 013EH

MAXMACS .EQU 32H ;NUMBER OF MACS FUNCTIONS WHICH COULD

;BE EXECUTED TILL AN OVERFLOW OR UNDERFLOW

;COULD OCCUR THE FIRST TIME

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.BSS MCOUNT,2

.IF OPERAND1=8

MOV.B &OPER1,&MACS ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

SXT &MACS ; EXPAND BYTE TO SIGNED WORD DATA

.ELSE

MOV &OPER1,&MACS ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY

.ENDIF

.IF OPERAND1=8

SXT &OPER2 ; OPER2 MEMORY LOCATION NEEDS
; 2 BYTES

MOV.B &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ELSE

MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

.ENDIF

**
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION *

* TO THE RAM DATA IF NECESSARY *

* THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO AND *

* RESHI REGISTERS. THE UPPER TWO WORDS IN THE EXAMPLE ARE *

* FURTHER LOCATED IN THEIR RAM LOCATION *
**

INC MCOUNT ; INC MACS COUNTER

CMP #MAXMACS,MCOUNT ; ONLY ADD TO RAM IF NECESSARY

JNE NEXTMACS ;

ADDC &RESLO,&RAM+0 ; ADD SUMEXTENSION TO RAM+0

ADDC &RESHI,&RAM+2 ; ADD SUMEXTENSION TO RAM+2

ADDC &SUMEXT,&RAM+4 ; ADD SUMEXTENSION TO RAM+4

ADDC &SUMEXT,&RAM+6 ; IF 64 BIT LENGTH IS USED

CLR MCOUNT

NEXTMACS
. . .

Hardware Multiplier Registers

6-9Hardware Multiplier

6.3 Hardware Multiplier Registers

Hardware multiplier registers are word structured, but can be accessed using
word or byte processing instructions. Table 6–2 describes the hardware
multiplier registers.

Table 6–2.Hardware Multiplier Registers
Register Short Form Register Type Address Initial State

Multiply Unsigned (Operand1) MPY Read/write 0130h Unchanged

Multiply Signed (Operand1) MPYS Read/write 0132h Unchanged

Multiply+Accumulate (Operand1) MAC Read/write 0134h Unchanged

Multiply Signed+Accumulate (Operand1) MACS Read/write 0136h Unchanged

Second Operand OP2 Read/write 0138h Unchanged

Result Low Word ResLo Read/write 013Ah Undefined

Result High Word ResHi Read/write 013Ch Undefined

Sum Extend SumExt Read 013Eh Undefined

Two registers are implemented for both operands, OP1 and OP2, as shown
in Figure 6–3. Operand 1 uses four different addresses to address the same
register. The different address information is decoded and defines the type of
multiplication operation used.

Figure 6–3. Registers of the Hardware Multiplier

Sum Extension Word, SumExt

Operand 1, OP1

15 0

Operand 2, OP2

Result Low Word, ResLo

Result High Word, ResHi

MPY (130h),MPYS (132h)
MAC (134h), MACS(136h)

OP2 (138h)

ResLo (13Ah)

ResHi (13Ch)

SumExt (13Eh)

The multiplication result is located in two word registers: result high (RESHI)
and result low (RESLO). The sum extend register (SumExt) holds the result
sign of a signed operation or the overflow of the multiply and accumulate
(MAC) operation. See Section 6.5.3 for a description of overflow and
underflow when using the MACS operations.

All registers have the least significant bit (LSB) at bit0 and the most significant
bit (MSB) at bit7 (byte data) or bit15 (word data).

Hardware Multiplier Special Function Bits

6-10

6.4 Hardware Multiplier Special Function Bits

Because the hardware multiplier module completes all multiplication
operations quickly, without interrupt intervention, no special function bits are
used.

6.5 Hardware Multiplier Software Restrictions

Two restrictions require attention when the hardware multiplier is used:

� The indirect or indirect autoincrement address mode used to process the
result

� The hardware multiplier used in an interrupt routine

6.5.1 Hardware Multiplier Software Restrictions—Address Mode

The result of the multiplication operation can be accessed in indexed, indirect,
or indirect autoincrement mode. The result registers may be accessed without
any restrictions if you use the indexed address mode including the symbolic
and absolute address modes. However, when you use the indirect and indirect
autoincrement address modes to access the result registers, you need at least
one instruction between loading the second operand and accessing one of the
result registers.

**
* EXAMPLE: MULTIPLY OPERAND1 AND OPERAND2
**

RESLO .SET 013AH ; RESLO = ADDRESS OF RESLO
PUSH R5 ; R5 WILL HOLD THE ADDRESS OF
MOV #RESLO,R5 ; THE RESLO REGISTER

MOV &OPER1,&MPY ; LOAD 1ST OPERAND,
; DEFINES ADD. UNSIGNED MULTIPLY

MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START
; MULTIPLICATION

**
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE *
* MULTIPLICATION TO THE RAM DATA, 64BITS *
**

NOP ; MIN. ONE CYCLES BETWEEN MOVING
; THE OPERAND2 TO HW–MULTIPLIER
; AND PROCESSING THE RESULT WITH
; INDIRECT ADDRESS MODE

ADD @R5+,&RAM ; ADD LOW RESULT TO RAM
ADDC @R5,&RAM+2 ; ADD HIGH RESULT TO RAM+2
ADC &RAM+4 ; ADD CARRY TO EXTENSION WORD
ADC &RAM+6 ; IF 64 BIT LENGTH IS USED

POP R5

The previous example shows that the indirect or indirect autoincrement
address modes, when used to transfer the result of a multiplication operation
to the destination, need more cycles and code than the absolute address
mode. There is no need to access the hardware multiplier using the indirect
addressing mode.

Hardware Multiplier Software Restrictions

6-11Hardware Multiplier

6.5.2 Hardware Multiplier Software Restrictions—Interrupt Routines

The entire multiplication routine requires only three steps:

1) Move operand OP1 to the hardware multiplier; this defines the type of
multiplication.

2) Move operand OP2 to the hardware multiplier; the multiplication starts.

3) Process the result of the multiplication in the RESLO, RESHI, and
SUMEXT registers.

The following considerations describe the main routines that use hardware
multiplication. If no hardware multiplication is used in the main routine,
multiplication in an interrupt routine is protected from further interrupts,
because the GIE bit is reset after entering the interrupt service routine.
Typically, a multiplication operation that uses the entire data process occurs
outside an interrupt routine and the interrupt routines are as short as possible.

A multiplication operation in an interrupt routine has some feedback to the
multiplication operation in the main routine.

6.5.2.1 Interrupt Following an OP1 Transfer

The two LSBs of the first operand address define the type of multiplication
operation. This information cannot be recovered by any later operation.
Therefore an interrupt must not be accepted between the first two steps: move
operand OP1 and OP2 to the multiplier.

6.5.2.2 Interrupt Following an OP2 Transfer

After the first two steps, the multiplication result is in the corresponding
registers RESLO, RESHI, and SUMEXT. It can be saved on the stack (using
the PUSH instruction) and can be restored after completing another
multiplication operation (using the POP instruction). However, this operation
takes additional code and cycles in the interrupt routine. You can avoid this,
by making an entire multiplication routine uninterruptible, by disabling any
interrupt (DINT) before entering the multiplication routine, and by enabling
interrupts (EINT) after the multiplication routine is completed. The negative
aspect of this method is that the critical interrupt latency is significantly
increased for events that occur during this period.

6.5.2.3 General Recommendation

In general, one should avoid a hardware multiplication operation within an
interrupt routine when a hardware multiplication is already used in the main
program. (This will depend upon the application-specific software, applied
libraries, and other included software.) The methods previously discussed
have some negative implications; therefore, the best practice is to keep
interrupt routines as short as possible.

Hardware Multiplier Software Restrictions

6-12

6.5.3 Hardware Multiplier Software Restrictions—MACS

The multiplier does not automatically detect underflow or overflow in the
MACS mode. An overflow occurs when the sum of the accumulator register
and the result of the signed multiplication exceed the maximum binary range.

The binary range of the accumulator for positive numbers is 0 to 231–1
(7FFF FFFFh) and for negative numbers is –1 (0FFFF FFFFh) to –231

(8000 0000h). An overflow occurs when the sum of two negative numbers
yields a result that is in the range given above for a positive number. An
underflow occurs when the sum of two positive numbers yields a result that is
in the range for a negative number.

The maximum number of successive MACS instructions without underflow or
overflow is limited by the individual application and should be determined
using a worst-case calculation. Care should then be exercised to not exceed
the maximum number or to handle the conditions accordingly.

7-1Basic Clock Module

Basic Clock Module

This chapter discusses the Basic Clock Module used in the MSP430x1xx
families.

Topic Page

7.1 Basic Clock Module 7–2.

7.2 LXFT1 and XT2 Oscillators 7–4.

7.3 Digitally-Controlled Oscillator (DCO) 7–10.

7.4 Basic Clock Module Operating Modes 7–14.

7.5 Basic Clock Module Control Registers 7–18.

Chapter 7

7-2

7.1 Basic Clock Module

The Basic Clock Module (shown in Figure 7–1) follows the major targets of low
system cost and low power consumption. Using three internal clock signals,
the design engineer can select the best balance of performance and low power
consumption. The Basic Clock Module can be configured to operate without
any external components, with one external resistor, with one or two external
crystals, with resonators, or with clock sources using any combination of the
above. The Basic Clock Module is accessible to the CPU as a byte-wide
peripheral module.

Figure 7–1. Basic Clock Schematic

DIVA

XT2Off

XIN LFXT1 Oscillator

ACLK

OSCOff XTS

/1, /2, /4, /8

2

DIVM

/1, /2, /4, /8, Off

22

SELM CPUOff

Auxiliary Clock

MCLK
Main System Clock

DIVS

/1, /2, /4, /8, Off

2

SELS SCG1

SMCLK
Sub-System Clock

XOUT

XT2IN

XT2OUT

SMCLKGEN

LFXT1CLK

XT2CLK

MCLKGEN

ACLKGEN

DCOMOD

XT2
Oscillator

Digital Controlled Oscillator DCO
+

Modulator MOD

DC
Generator

53

DCO MODRsel SCG0

DCOR

If the external resistor function is shared on a digital terminal, the DCOR control
bit defines if the digital port of the DCO generator is connected to that terminal.

Pn.x

VCCVCC

0

1

Note: The XT2 oscillator is implemented in MSP430F13x and MSP430F14x devices. The LFXT1 signal is used instead of XT2CLK signal in

MSP430x11xx and MSP430x12x devices without XT2 oscillator.

3
0,1

2

0

1

DCOCLK

7-3Basic Clock Module

The Basic Clock Module includes two or three clock sources:

� LFXT1CLK low-frequency/high-frequency clock source. One oscillator
that can be used with low-frequency watch crystals, standard crystals,
resonators, or external clock sources. See the device data sheet for the
exact operating frequency range.

� XT2CLK high-frequency clock source. This optional high-frequency
oscillator can also use standard crystals, resonators, or external clock
sources in the 450-kHz to 8-MHz range. See the device data sheet for the
exact operating frequency range and availability of this optional oscillator.

� DCOCLK clock source. One digitally controlled oscillator (DCO) with
RC-type characteristics.

Three clock signals are available from the Basic Clock Module:

� ACLK auxiliary clock. The ACLK is the buffered LFXT1CLK clock source
divided by 1, 2, 4, or 8. Software selects the division factor. ACLK is
software selectable for individual peripheral modules.

� MCLK master clock. MCLK is software selectable as LFXT1CLK, XT2CLK
(if available), or DCOCLK. MCLK is divided by 1, 2, 4, or 8. Software
selects the division factor. MCLK is used by the CPU and system.

� SMCLK submain clock. SMCLK is software selectable as LFXT1CLK,
XT2CLK (if available), or DCOCLK. SMCLK is divided by 1, 2, 4, or 8.
Software selects the division factor. SMCLK is software selectable for
individual peripheral modules.

LFXT1 and XT2 Oscillators

7-4

7.2 LFXT1 and XT2 Oscillators

The Basic Clock Module includes the LFXT1 oscillator and, in some
configurations, a second XT2 oscillator.

7.2.1 LFXT1 Oscillator

The LFXT1 oscillator starts operating on a valid PUC condition. A valid PUC
condition resets the OscOff bit in the status register, which enables LFXT1.
Software can disable LFXT1 by setting OscOff, if this signal does not source
SMCLK or MCLK.

The design of the LFXT1 oscillator (shown in Figure 7–2) supports the
low-current consumption feature and the use of a 32,768-Hz watch crystal
when in LF mode (XTS=0). A watch crystal connects to the clock module via
two terminals without any other external components. Components necessary
to stabilize the clock operation have been integrated into the MSP430.

The design of the LFXT1 oscillator also supports high-speed crystals or
resonators when in HF mode (XTS = 1). The crystal or resonator connects to
the terminals and requires external capacitors on both terminals. These
capacitors should be sized according to crystal or resonator specifications.

Figure 7–2. Principle of LFXT1 Oscillator

XT1Off
Oscillator

Fault DetectLFOff

OscOff XTS

10

10

XIN

XOUT

LFXT1_OscFault

LFXT1CLK

Low Power
LF Oscillator, XTS = 0

The OscOff bit in the status register is used to turn off LFXT1CLK if this signal
does not source MCLK or SMCLK.

LFXT1 and XT2 Oscillators

7-5Basic Clock Module

Figure 7–3. Off Signals for the LFXT1 Oscillator

XT2

XTS

OscOff
CPUOff
SELM.1
SELM.0

SCG1

SELS

XT2 Is an Internal Signal
XT2 = 0: MSP430x11xx, MSP430x12x devices
XT2 = 1: MSP430F13x, MSP430F14x devices

OscOff

0
1
1

CPUOff

x
0
x

SELM.x

x
3 or 2+3†

x

SCG1

x
x
0

SELS

x
x
1

LFXT1CLK

on
on‡

on‡

Comment

Oscillator Active
Clock Signal Needed for MCLK
Clock Signal Needed for SMCLK

† Two oscillators: SELM.x = 3. Three oscillators: SELM.x = 3 and 2
‡ LFXT1CLK is switched off for all other bit combinations

LFoff

XT1off

7.2.2 XT2 Oscillator

A second oscillator, XT2, is available in MSP430F13x and MSP430F14x de-
vices. XT2 sources XT2CLK, and its characteristics are identical to LFXT1 in
HF mode.

The XT2Off control bit disables the XT2 oscillator if signal XT2CLK is not used
for MCLK or SMCLK. If the CPUOff bit is reset and SELM = 2, XT2CLK sources
MCLK . The XT2CLK sources SMCLK if SCG1 is reset and SELS = 1.

Figure 7–4. Off Signals for Oscillator XT2

XT2Off
CPUOff
SELM.1
SELM.0

SCG1

SELS

XT2Off

OscOff

0
1
1

CPUOff

x
0
x

SELM.x

x
2
x

SCG1

x
x
0

SELS

x
x
1

XT2CLK

on
on†

on†

Comment

Oscillator Active
Clock Signal Needed for MCLK
Clock Signal Needed for SMCLK

† XT2CLK is switched off in all other bit combinations

LFXT1 and XT2 Oscillators

7-6

7.2.3 Oscillator Fault Detection

An analog circuit controls the operation of oscillators LFXT1 and XT2 and flags
an oscillator fault when crystal cycles are not present for approximately 50 µs.
The active OSCFault signal sets the oscillator-fault-interrupt flag (OFIFG) and
requests a non-maskable interrupt when the oscillator-fault interrupt enable bit
(OFIE) is set. User software must clear the OFIFG flag.

Figure 7–5. Oscillator-Fault-Interrupt

XT_OscFault

S

Clear

NMIFG NMIRS

OFIFG

OFIE

PUC IRQA

IE1.1

IFG1.1

XT1off

LFXT1_OscFault

POR

XT2off
XT2_OscFault

XT2

Oscillator Fault NMI

Fault_from
XT2

Fault_from
XT1

XTS

SELM.1

SELM.0

DCOR

Select DCO including Internal Resistor XT Oscillator Fails

XT2 Is an internal signal
XT2 = 0: Two oscillators – MSP430x11xx and MSP430x12x devices
XT2 = 1: Three oscillators – MSP430F13x and MSP430F14x devices
IRQA: Interrupt request accepted
LFT_XT_OscFault: Only applicable to LFXT1 oscillator in HF mode.

XSELM.1

XDCOR

The XT2_OscFault signal of the XT2 oscillator, and the LFXT1_OscFault
signal of the LFXT1 oscillator will set the oscillator-fault-interrupt flag (OFIFG)
independently. For two-oscillator implementation, the oscillator-fault-interrupt
flag can be reset by software if the LFXT1_OscFault signal is a logic low. For
three-oscillator implementation, the oscillator-fault-interrupt flag can be reset
by software only if both oscillator-fault signals, LFXT1_OscFault and
XT2_OscFault, are low.

LFXT1 and XT2 Oscillators

7-7Basic Clock Module

Note: LFXT1 Oscillator Fault Signal

The LFXT1_OscFault signal is only applicable when the LFXT1 oscillator is
used in HF mode. There is no oscillator fault detection for the LFXT1
oscillator when it is configured in LF mode.

After applying VCC the oscillator fault signal (XT_OscFault) becomes active.
The XT_OscFault signal becomes inactive when XT2CLK and/or LFXT1CLK
have been oscillating for approximately 50 µs.

Figure 7–6. Oscillator-Fault Signal

VCC

XT2CLK
LFXT1CLK

XT_OscFault

Oscillator
Start-Up

XT_OscFault becomes active after XT2CLK and/or LFXT1CLK stop
oscillating. The delay associated with the XT_OscFault signal is
approximately 50 µs.

Figure 7–7. Oscillator Fault in Oscillator Error Condition

VCC

XT2CLK
LFXT1CLK

XT_OscFault

Oscillator
Error

The oscillator-fault signal returns to a logic low if the oscillator starts operating
again. The delay is typically 50 µs.

When an XT oscillator has stopped and is then restarted, the oscillator fault
signal (XT_OscFault) remains active until the oscillator starts operating, and
becomes inactive after a delay of typically 50 µs.

LFXT1 and XT2 Oscillators

7-8

Figure 7–8. Oscillator Fault in Oscillator Error Condition at Start-Up

VCC

XT2CLK
LFXT1CLK

XT_OscFault

XT1Off/
XT2Off

7.2.4 Select DCO Oscillator for MCLK on XT Oscillator Fault

The DCO oscillator is selected automatically for MCLK if either one of the
oscillators LFXT1 (in HF mode only), or XT2 is selected for MCLK source and
this oscillator fails. Since the DCO oscillator is now selected, the NMI
requested by the oscillator fault can be processed. The DCO oscillator is
switched on and the DCOCLK is switched to be the source for MCLK. An NMI
is processed even if the CPU is switched off (CPUOFF=1).

The MSP430 ultralow-power system allows any enabled interrupt to be
serviced from any low-power mode, including LPM4. MCLK automatically
becomes active inside of an interrupt service routine.

An NMI interrupt routine written by the user, which handles the oscillator fault,
has some important steps that should be used for proper handling of the fault
situation. First, if the NMI interrupt routine detects the oscillator fault and
selects the DCO as clock source for the system clock MCLK. Second, the user
programs a proper algorithm to detect if the XT oscillator is working again and
reselects an XT oscillator for the system clock MCLK if desired.

LFXT1 and XT2 Oscillators

7-9Basic Clock Module

Figure 7–9. NMI/OSCFault Interrupt Handler

Start of NMI Interrupt Handler
Reset by HW:

OFIE, NMIE, ACCIE

OFIFG = 1 ACCVIFG = 1 NMIFG = 1
No No No

Select DCO For MCLK
SELM.1 = 0

Reset ACCVIFG Reset NMIIFG

User’s Software,
Oscillator Fault

Handler

User’s Software,
Flash Access

Violation Handler

User’s Software,
External NMI

Handler

OFIFG = 0

OFIFG = 0
No

Yes YesYes

Reselect Failed
XT Oscillator

Yes

Set NMIE, OFIE,
ACCVIE Within One

Instruction

RETI
End of NMI Int. Handler

Example1:
BIS.B #(NMIIE+OGIE+ACCVIFG), &IE1

Example2:
BIS.B Mask, &IE1 ; Mask Enables Only

; Interrupt Sources
; That are Needed

Optional

Note: Example for MSP430F1xx device

If an oscillator error forces the DCO on and uses the DCOCLK for MCLK, the
clock source for MCLK should be selected to DCOCLK with SELM.1=0. If the
oscillator error disappears and the original source for MCLK should be used
again, the SELM.1 bit needs to be reset.

Int_OscError

BIC.B #SELM1,&BCSCTL2 ; Use DCOCLK for MCLK

.....

.....

BIC.B #OFIFG,&IFG1 ; Try to clear oscillator error
; flag

BIT.B #OFIFG,&IFG1 ; Test if oscillator error gone

JC #Continue ; Oscillator fault still valid

BIS.B #SELM1,&BCSCTL2 ; Return to original source for
; MCLK

Digitally-Controlled Oscillator (DCO)

7-10

Continue

.....

.....

RETI

7.3 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated RC-type oscillator in the Basic Clock Module. The
DCO frequency can be tuned by software using the DCO, MOD, and RSEL
bits. The DCO is absolutely monotonic. As with any RC-type oscillator,
frequency varies with temperature, voltage, and from device to device. The
digital control of the oscillator allows frequency stabilization despite its
RC-type characteristics.

Figure 7–10. DCO Schematic

1

0

XDCOR

DC Generator DCO

Modulator Halt

3

3 5

0 1 2
Rsel

DCO MOD
XSELM.1

CPUOff SCG1

SELS

VCC VCC

DCOCLK

SCG0

The dc generator, when switched off, requires some minimal start-up time (4
microsecond range) due to its low-current design. Once the current is switched
on, the resistor injects current in the microampere range into the dc generator;
the internal and external parasitic capacitances introduce the delay in the
microsecond range. No delay occurs in operating modes that do not require
to switch off the dc generator current.

An internal or external resistor is connected to the dc generator, which
determines the operating fundamental frequency of the DCOCLK.

The frequency of DCOCLK is set by the following functions:

� The current injected into the dc generator (DCGEN) by either the internal
or external resistor defines the fundamental frequency. Control bit DCOR
selects the internal or external resistor.

� Control bits Rsel2, Rsel1, and Rsel0 divide the fundamental frequency
into eight nominal frequency ranges. These ranges are defined for an
individual device in the appropriate data sheet.

� The three control bits, DCO0 to DCO2, adjust the DCOCLK frequency.

� The five modulation bits, MOD0 to MOD4, switch between the frequency
selected by the DCO bits and the next higher frequency set by DCO+1.

Digitally-Controlled Oscillator (DCO)

7-11Basic Clock Module

The clock period of the DCOCLK signal changes approximately ten percent
for each step of the control bit DCO.

Figure 7–11. Principle Period Steps of the DCO

fDCOCLK

Nominal

0 1 2 3 4 5 6 7 DCO

Five bits (SCG0, CPUOff, SELM.1, SCG1, and SELS) control the operation of
the DCO.

Figure 7–12. On/Off Control of DCO

QD

QD

CL

CPUOff

XSELM.1

SCG1

SELS

SCG0
SMCLK

POR

DCOCLK

DCOCLK_on

1: on
0: off

DCO_Gen_on

1: on
0: off

SCG0

x
x

0
0

0
0

1

CPUOff

0
x

0
1

SELM.1

0
x

1
x

SCG1

x
0

0
1

SELS

x
0

1
x

DCOCLK

on
on

off
off

off
off

off

Comment

DCO Clock Needed for MCLK
DCO Clock Needed for SMCLK

DCO Clock Is Not Needed
For MCLK (and SMCLK)

DCO Clock Is Not Needed
For SMCLK (and MCLK)

DCO Clock Is Not Needed:
SCG0 Bit Switches Off DCOGEN

NOTES: A. SMCLK does not need the DCOCLK signal if:
SMCLK is switched off (SCG1 = 1), or DOCCLK is not selected for SMCLK (SELS = 0).

B. MCLK does not need the DCOCLK signal if:
MCLK is switched off (CPUOff = 1), or DOCCLK is not selected for MCLK (SELM.1 = 1).

C. MCLK and SMCLK does not need the DCOCLK signal if:
The control bit SCG0 in the status register can switch off (SCG0 = 1) the DCOGEN.

DCO_GEN

on
on

on
on

on
on

off

(see Note A)

(see Note B)

(see Note C)

Digitally-Controlled Oscillator (DCO)

7-12

7.3.1 Operation of the DCO Modulator

The modulator is intended to reduce a long accumulating period variation by
mixing adjacent DCO periods. On average, a longer period variation can be
minimized by mixing DCO periods. The modulator accumulates a period of 32
DCOCLK clock cycles. The MOD control bits define the mixing ratio of the
DCO+1 period. The remaining 32-MOD time slots use the DCO period. If the
modulation constant is 0, the DCO data in the control register defines the peri-
od. The following formula defines the accumulating periods:

t =(32– MOD) × tDCO + MOD × tDCO+1

The modulator selects fdco or fdco+1 individually for each DCO cycle. This is
the highest possible rate that can be modulated between two discrete
frequency steps. The following example illustrates the main operation of the
modulator.

Figure 7–13. Operation of the DCO Modulator

DCOCLK

f0 f1 f2 f3 f4 f5 f6 f7

Frequency Selected
Frequency

1000 kHz

943 kHz

1042 kHz

Cycle Time

1000 ns

1060 ns

960 ns

Selected:

f3:

f4:

MOD = 19

Modulation Period
1
0DCO

(ns)
40
20

0
–20
–40
(%)

4
3
2
1
0

–1
–2
–3
–4

Error of
Σ tperiod

Error of
Σ tperiod

Digitally-Controlled Oscillator (DCO)

7-13Basic Clock Module

The user should consider two factors when reviewing the timing accuracy gen-
erated from the DCOCLK signal:

� Short term accuracy: Each individual cycle is as inaccurate as the DCO
steps.

� Long term accuracy: The accumulated average of many individual
cycles reduces the relative error by less
than 0.33%, assuming a step delta of 10% and
a modulation period of 32.

Proper use of the modulation feature on the DCOCLK period increases the
accuracy by averaging the periods. The selected frequency set using the
control bits in the DCO and the modulation fraction defined by the control bits
in MOD sets the DCOCLK periods.

Note: Control of DCOCLK Frequency

The frequency of the digitally-controlled oscillator varies with temperature
and voltage and is different for each individual sample. The frequency can
be controlled by software if an external reference (such as the ACLK signal)
is used to measure the difference and to readjust the DCO frequency.

Basic Clock Module Operating Modes

7-14

7.4 Basic Clock Module Operating Modes

Control bits SCG0, SCG1, OscOff, and CPUOff in the status register configure
the operating mode, as discussed in Chapter 3, System Resets, Interrupts and
Operating Modes.

The digitally-controlled oscillator is disabled when not used for MCLK or
SMCLK. The dc generator must be switched off separately, but is switched on
automatically when the DCOCLK signal is used, either for MCLK or SMCLK.

7.4.1 Starting From Power Up Clear (PUC)

On a valid PUC, the internal resistor is selected for the dc generator, Rsel = 4,
and DCO = 3, allowing the oscillator to operate at a medium frequency and
independently from external conditions. ACLK is sourced from LFXT1 in the
LF mode and configured to operate with a watch crystal; MCLK and SMCLK
are sourced from DCOCLK. Because the CPU executes code from MCLK,
which is sourced from the fast-starting DCO, code execution from PUC is fast,
typically less than 6 µs. After a PUC, user software selects the best basic clock
configuration for the application.

7.4.2 Adjusting the Basic Clock

The control registers of the Basic Clock are under full software control. If clock
requirements other than those of the default from PUC are necessary, the
Basic Clock can be configured or reconfigured by software at any time during
program execution.

� ACLKGEN from LFXT1 crystal, resonator, or external-clock source and
divided by 1, 2, 4, or 8. If no LFXTCLK clock signal is needed in the
application, the OscOff bit should be set in the status register.

� SCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only)
and divided by 1, 2, 4, or 8. The SCG1 bit in the status register enables
or disables SMCLK.

� MCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only)
and divided by 1, 2, 4, or 8. When set, the CPUOff bit in the status register
enables or disables MCLK.

� DCOCLK frequency is adjusted using the RSEL, DCO, and MOD bits. The
DCOCLK clock source is stopped when not used, and the dc generator
can be disabled by the SCG0 bit in the status register (when set).

� The XT2 oscillator sources XT2CLK (x13x and x14x only) by clearing the
XT2Off bit.

User software can modify the Basic Clock to meet the system requirements
at any time using the full MSP430 instruction set. A few examples follow:

bis.b #007h,&BCSCTL1 ; RSEL=7

mov.b #081h,&BCSCTL1 ; XT2off, RSEL=1

bis.b #070h,&BCSCTL1 ; ACLK= high-speed XTAL/8

bis.b #008h,&BCSCTL2 ; SMCLK=LFXT1

inc.b &DCOCTL ; Increase DCOCLK

dec.b &DCOCTL ; Decrease DCOCLK

Features for Low-Power Applications

7-15Basic Clock Module

7.4.3 Basic Clock Features for Low-Power Applications

Conflicting requirements typically exist in battery powered MSP430x1xx
applications:

� Low clock frequency for energy conservation and time keeping

� High clock frequency for fast reaction to events and fast burst processing
capability

The Basic Clock Module addresses the above conflicting requirements by
allowing the design engineer to select from the three available clock signals:
ACLK, MCLK and SMCLK. For optimal low-power performance, the ACLK can
be configured to oscillate with a low 32,786-Hz watch-crystal frequency,
providing a stable time base for the system and low power stand-by operation.
The MCLK can be configured to operate from the on-chip DCO which is only
activated when requested by events. The SMCLK can be configured to
operate from either the watch-crystal or the DCO, depending on peripheral
requirements. A flexible clock distribution and divider system is provided to
fine tune the individual clock requirements. All basic clock-module
configurations are under full software control.

7.4.4 Selecting a Crystal Clock for MCLK

After power up, the Basic Clock Module uses the DCO clock for the system
clock MCLK. The LFXT1 oscillator starts in the low-frequency mode (XTS=0).
Regardless of the configuration of the clock system the application uses, if all
initial conditions are set, the software execution is ensured by the integrated
DCO. Finally, the application may use a crystal for further software execution.

Figure 7–14. Select Crystal Oscillator for MCLK, Example Uses LFXT1 for MCLK

MCLK
Main System Clock

SELM

2

DIVM

2

CPUOff

MCLKGEN

LFXT1CLK

 /1, /2, /4, /8, offDCOCLK

XT2CLK

3
0,1

2

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) should be:

1) Switch on the crystal oscillator

a) OscOff = 0, XTS is reset (LF mode is selected) or set (HF mode is
selected)

BIS.B #XTS,&BCSCTL1 ; Set XTS bit to select LFXT1
; oscillator

BIC #OSCOFF,SR ; Turn on LFXT1 oscillator

Features for Low-Power Applications

7-16

b) In x13x and x14x devices, the XT2 oscillator can also be used: XT2Off
is reset

BIC.B #XT2Off,&BCSCTL1 ; Reset XT2Off to turn on LFXT1
; oscillator

2) Clear the OscFault flag.

3) Wait the required delay.

4) Test the OscFault flag.

5) Repeat steps 2 through 4 until the OscFault flag remains cleared.

L1 BIC.B #OFIFG,&IFG1 ; Clear OscFault flag

MOV #0FFFh,R15 ; Move delay value to register

L2 DEC R15 ; Decrement delay value

JNZ L2 ; Repeat until zero

BIT.B #OFIFG,&IFG1 ; Test OscFault flag

JNZ L1 ; Repeat if necessary

Sourcing MCLK With 32768 Hz

Do not source MCLK from LFXT1_CLK when the LFXT1 oscillator
is in LF mode (32768 Hz). Increased power consumption will result.

Figure 7–15. Timing to Select Crystal Oscillator for MCLK, Example Uses LFXT1 in HF
Mode for MCLK

If Crystal Oscillator settled Then Select Crystal Oscillator
for MCLK

DCOCLK

XT1CLK

MCLK

XT1CLKDCOCLK

Turn on the
Crystal Oscillator

Features for Low-Power Applications

7-17Basic Clock Module

7.4.5 Synchronization of Clock Signals

The clock signals MCLK and SMCLK can be supplied by different clock
sources. While switching from one clock source to the other, the switch is
synchronized to avoid critical race conditions. When another clock source is
selected the following occurs in order:

1) The current clock cycle continues until the next rising edge.

2) The clock then remains high until the next rising edge of the newly selected
clock.

3) Now the new clock source is selected and continues with a full high period.

Figure 7–16. Select Another Clock Source Signal, Example Switches From DCOCLK to
LFXT1CLK for Clock MCLK

DCOCLK

LFXT1CLK

MCLK

LFXT1CLKDCOCLK

Select
LFXT1CLK

Wait for
+LFXT1CLK

Basic Clock Module Control Registers

7-18

7.5 Basic Clock Module Control Registers

The Basic Clock Module is configured using control registers DCOCTL,
BCSCTL1, and BCSCTL2, and four bits from the CPU status register: SCG1,
SCG0, OscOff, and CPUOFF. User software can modify these control
registers from their default condition at any time. The Basic Clock Module
control registers are located in the byte-wide peripheral map and should be
accessed with byte (.B) instructions.

Register Short Form Register Type Address Initial State

DCO control
register

DCOCTL Read/write 056h 060h

Basic clock
system control 1

BCSCTL1 Read/write 057h 084h

Basic clock
system control 1

BCSCTL2 Read/write 058h reset

7.5.1 Digitally-Controlled Oscillator (DCO) Clock-Frequency Control

DCOCTL is loaded with a value of 060h with a valid PUC condition.

7 0

rw–0 rw–1 rw–1 rw–0 rw–0 rw–0 rw–0 rw–0

DCO.2056h

DCOCTL
DCO.1 DCO.0 MOD.4 MOD.3 MOD.2 MOD.1 MOD.0

MOD.0 .. MOD.4: The MOD constant defines how often the discrete
frequency fDCO+1 is used within a period of 32 DCOCLK cycles.
During the remaining clock cycles (32–MOD) the discrete frequency
fDCO is used. When the DCO constant is set to seven, no modulation is
possible since the highest feasible frequency has then been selected.

DCO.0 .. DCO.2: The DCO constant defines which one of the eight discrete
frequencies is selected. The frequency is defined by the current
injected into the dc generator.

7.5.2 Oscillator and Clock Control Register

BCSCTL1 is affected by a valid PUC or POR condition.

7 0

rw–(1) rw–(0) rw–(0) rw–(0) rw–0 rw–1 rw–0 rw–0
057h

BCSCTL1
XT2Off Rsel.0Rsel.1Rsel.2XTS DIVA.1 DIVA.0 XT5V

Bit0 to Bit2: The internal resistor is selected in eight different steps.
Rsel.0 to Rsel.2 The value of the resistor defines the nominal frequency.

The lowest nominal frequency is selected by setting Rsel=0.

Bit3, XT5V: XT5V should always be reset.

Bit4 to Bit5: The selected source for ACLK is divided by:
DIVA = 0: 1
DIVA = 1: 2
DIVA = 2: 4
DIVA = 3: 8

Basic Clock Module Control Registers

7-19Basic Clock Module

Bit6, XTS: The LFXT1 oscillator operates with a low-frequency clock
crystal or with a high-frequency crystal:
XTS = 0: The low-frequency oscillator is selected.
XTS = 1: The high-frequency oscillator is selected.

The oscillator selection must meet the external crystal’s operating condition.

Bit7, XT2Off: The XT2 oscillator is switched on or off:
XT2Off = 0: the oscillator is on
XT2Off = 1: the oscillator is off if it is not used for MCLK or SMCLK.

BCSCTL2 is affected by a valid PUC or POR condition.

7 0

rw–(0) rw–(0) rw–(0) rw–(0) rw–0 rw–0 rw–0 rw–0
058h

BCSCTL2
DCORDIVS.0DIVS.1DIVM.1 DIVM.0 SELSSELM.1 SELM.0

Bit0, DCOR: The DCOR bit selects the resistor for injecting current into the
dc generator. Based on this current, the oscillator operates if
activated.
DCOR = 0: Internal resistor on, the oscillator can operate. The fail-

safe mode is on.
DCOR = 1: Internal resistor off, the current must be injected

externally if the DCO output drives any clock using
the DCOCLK.

Bit1, Bit2: The selected source for SMCLK is divided by:

DIVS.1 .. DIVS.0 DIVS = 0: 1
DIVS = 1: 2
DIVS = 2: 4
DIVS = 3: 8

Bit3, SELS: Selects the source for generating SMCLK:
SELS = 0: Use the DCOCLK
SELS = 1: Use the XT2CLK signal (in three-oscillator systems)
or
LFXT1CLK signal (in two-oscillator systems)

Bit4, Bit5: The selected source for MCLK is divided by:

DIVM.0 .. DIVM.1 DIVM = 0: 1
DIVM = 1: 2
DIVM = 2: 4
DIVM = 3: 8

Bit6, Bit7: Selects the source for generating MCLK:
SELM.0 .. SELM.1 SELM = 0: Use the DCOCLK

SELM = 1: Use the DCOCLK
SELM = 2: Use the XT2CLK (x13x and x14x devices) or

Use the LFXT1CLK (x11xx and x12x devices)
SELM = 3: Use the LFXT1CLK

Basic Clock Module Control Registers

7-20

7.5.3 Special-Function Register Bits

The Basic Clock Module affects two bits in the special-function registers
OFIFG and OFIE. The oscillator fault-interrupt enable bit (OFIE) is located in
bit 1 of the interrupt-enable register IE1. The oscillator fault-interrupt flag bit
(OFIFG) is located in bit 1 of the interrupt-flag register IFG1.

IE1 7 6 5 4 3 2 1 0

00h OFIE

 rw–0

IFG1 7 6 5 4 3 2 1 0

02h OFIFG

 rw–1

The oscillator fault signal XT_OscFault sets the OFIFG as long as the oscillator
fault condition is active. The detection and effect of the oscillator fault condition
is described in section 7.4.1. The oscillator fault interrupt requests a
nonmaskable interrupt if the OFIE bit is set. The oscillator interrupt-enable bit
is reset automatically if a non-maskable interrupt is accepted. The initial state
of the OFIE bit is reset and no oscillator fault requests an interrupt even if a fault
condition occurs.

8-1Digital I/O Configuration

Digital I/O Configuration

This chapter describes the digital I/O configuration.

Topic Page

8.1 Introduction 8-2.

8.2 Ports P1, P2 8-3.

8.3 Ports P3, P4, P5, P6 8-9.

Chapter 8

Introduction

8-2

8.1 Introduction

The general-purpose I/O ports of the MSP430 are designed to give maximum
flexibility. Each I/O line is individually configurable, and most have interrupt
capability.

There are two different types of I/O port modules in the MSP430x1xx family
devices. Ports P1 and P2 are of one type, and ports P3 to P6 are of another
type. Both types have the capability to control input/output direction and output
level, to read the level applied to a pin, and to control if a port or module function
is applied to a pin. The port module for P1 and P2 have interrupt capability; flag,
enable, and edge sensitivity are available individually for each bit.

MSP430x11xx devices have ports P1 and P2 implemented; MSP430x12x
devices have ports P1 to P3 implemented; MSP430x13x and MSP430x14x
have ports P1 to P6 implemented.

Ports P1, P2

8-3Digital I/O Configuration

8.2 Ports P1, P2

Each of the general-purpose ports P1 and P2 contain 8 general-purpose I/O
lines and all of the registers required to control and configure them. Each I/O
line is capable of being controlled independently. In addition, each I/O line is
capable of producing an interrupt.

Separate vectors are allocated to ports P1 and P2 modules. The pins for port
P1 (P1.0–7) source one interrupt, and the pins for port P2 (P2.0–7) source
another interrupt.

Seven registers are used to control the port I/O pins (see Section 8.2.1).

Ports P1 and P2 are connected to the processor core through the 8-bit MDB
and the MAB. They should be accessed using byte instructions in the absolute
address mode.

Figure 8–1. Port P1, Port P2 Configuration

Input Register PnIN

Output Register PnOUT

Direction Register
PnDIR

Interrupt Flags PnIFG

Interrupt Edge Select
PnIES

Interrupt Enable PnIE

8 8R

R/W

8

8

R/W

R/W

8

MDB

MSB
Pn.7

LSB
Pn.0

R/W

8

R/W

n = 1: 020h
n = 2: 028h

n = 1: 021h
n = 2: 029h

n = 1: 022h
n = 2: 02Ah

n = 1: 023h
n = 2: 02Bh

n = 1: 024h
n = 2: 02Ch

n = 1: 025h
n = 2: 02Dh Function Select PnSEL

8

R/W

n = 1: 026h
n = 2: 02Eh

Ports P1, P2

8-4

8.2.1 Port P1, Port P2 Control Registers

The seven control registers give maximum digital input/output configuration
flexibility:

� All individual I/O bits are independently programmable.

� Any combination of input, output, and interrupt condition is possible.

� Interrupt processing of external events is fully implemented for all eight
bits of ports P1 and P2.

The seven registers for port P1 and the seven registers for port P2 are shown
in Table 8–1 and Table 8–2, respectively.

Table 8–1.Port P1 Registers

Register
Short
Form

Register
Type Address Initial State

Input P1IN Read only 020h – – – – –

Output P1OUT Read/write 021h Unchanged

Direction P1DIR Read/write 022h Reset

Interrupt flags P1IFG Read/write 023h Reset

Interrupt edge select P1IES Read/write 024h Unchanged

Interrupt enable P1IE Read/write 025h Reset

Function select P1SEL Read/write 026h Reset

Table 8–2.Port P2 Registers

Register
Short
Form

Register
Type Address Initial State

Input P2IN Read only 028h – – – – –

Output P2OUT Read/write 029h Unchanged

Direction P2DIR Read/write 02Ah Reset

Interrupt flags P2IFG Read/write 02Bh Reset

Interrupt edge select P2IES Read/write 02Ch Unchanged

Interrupt enable P2IE Read/write 02Dh Reset

Function select P2SEL Read/write 02Eh Reset

These registers contain eight bits, and should be accessed using byte
instructions in absolute-address mode.

8.2.1.1 Input Registers P1IN, P2IN

Both Input registers are read-only registers that reflect the signals at the I/O
pins.

Note: Writing to Read-Only Registers P1IN, P2IN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

Ports P1, P2

8-5Digital I/O Configuration

8.2.1.2 Output Registers P1OUT, P2OUT

Each output register shows the information of the output buffer. The output
buffer can be modified by all instructions that write to a destination. If read, the
contents of the output buffer are independent of pin direction. A direction
change does not modify the output buffer contents.

8.2.1.3 Direction Registers P1DIR, P2DIR

The direction registers contain eight independent bits that define the direction
of the I/O pin. All bits are reset by the PUC signal.

When:

Bit = 0: The port pin is switched to input direction (3-state)

Bit = 1: The port pin is switched to output direction

8.2.1.4 Interrupt Flags P1IFG, P2IFG

Each interrupt flag register contains eight flags that reflect whether or not an
interrupt is pending for the corresponding I/O pin, if the I/O is interrupt-enabled.

When:

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending due to a transition at the I/O pin or from
 software setting the bit.

Note:

Manipulating P1OUT and P1DIR, as well as P2OUT and P2DIR, can result
in setting the P1IFG or P2IFG bits.

Writing a zero to an interrupt flag resets it; writing a one to an interrupt flag sets
it and generates an interrupt.

Each group of interrupt flags P1FLG.0 to P1FLG.7 and P2FLG.0 to P2FLG.7
sources its own interrupt vector. Interrupt flags P1IFG.0 to P1IFG.7 and
P2IFG.0 to P2IFG.7 are not reset automatically when an interrupt from these
events is serviced. The software should determine the origin of the interrupt
and reset the appropriate flag(s).

Note:

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Ports P1, P2

8-6

8.2.1.5 Interrupt Edge Select P1IES, P2IES

Each interrupt edge select register contains a bit for each corresponding I/O
pin to select what type of transition triggers the interrupt flag.

When:

Bit = 0: The interrupt flag is set with a low-to-high transition

Bit = 1: The interrupt flag is set with a high-to-low transition

Note:

Changing the P1IES and P2IES bits can result in setting the associated
interrupt flags.

PnIES.x PnIN.x PnIFG.x
 0 → 1 0 Unchanged
 0 → 1 1 May be set
 1 → 0 0 May be set
 1 → 0 1 Unchanged

8.2.1.6 Interrupt Enable P1IE, P2IE

Each interrupt enable register contains bits to enable the interrupt flag for each
I/O pin in the port. Each of the sixteen bits corresponding to pins P1.0 to P1.7
and P2.0 to P2.7 is located in the P1IE and P2IE registers.

When:

Bit = 0: The interrupt request is disabled

Bit = 1: The interrupt request is enabled

Note: Port P1, Port P2 Interrupt Sensitivity

Only transitions, not static levels, cause interrupts.

If an interrupt flag is still set when the RETI instruction is executed (for
example, a transition occurs during the interrupt service routine), an interrupt
occurs again after RETI is completed. This ensures that each transition is
acknowledged by the software.

8.2.1.7 Function Select Registers P1SEL, P2SEL

P1 and P2 port pins are often multiplexed with other peripheral modules to
reduce overall pin count on MSP430 devices (see the specific device data
sheet to determine which other peripherals also use the device pins). Control
registers P1SEL and P2SEL are used to select the desired pin function—I/O
port or other peripheral module. Each register contains eight bits
corresponding to each pin, and each pin’s function is individually selectable.
All bits in these registers are reset by the PUC signal. The bit definitions are:

Bit = 0: Port P1 or P2 function is selected for the pin

Bit = 1: Other peripheral module function is selected for the pin

Ports P1, P2

8-7Digital I/O Configuration

Note: Function Select With P1SEL, P2SEL

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set.
Therefore, the input signal can no longer generate an interrupt.

When a port pin is selected to be used as an input to a peripheral module other
than the I/O port (PnSEL.x = 1), the actual input signal to the peripheral module
is a latched representation of the signal at the device pin (see Figure 8–2
schematic). The latch uses the PnSEL.x bit as its enable, so while PnSEL.x=1,
the internal input signal simply follows the signal at the pin. However, if the
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the
other peripheral module) represents the value of the signal at the device pin
just prior to the bit being reset.

8.2.2 Port P1, Port P2 Schematic

The pin logic of each individual port P1 and port P2 signal is identical. Each
bit can be read and written to as shown in Figure 8–2.

Figure 8–2. Schematic of One Bit in Port P1, P2

Pad Logic
Pn.x

Output
MUX

Output
MUX

Interrupt
Flag

Interrupt
Edge
Select

PnIE.x

PnIFG.x

PnIRQ.x

PnIRQ.y

PnIRQ.z

Request
Interrupt

Pn.07

PnSEL.x

PnIN.x

PnSEL.x

PnDIR.x

EN

A
Y

PnIES.x

Module x IN

Module X OUT

PnOUT.x

Direction Control
From Module

x = 0 to 7, according to bits 0 to 7
n = 1 for Port P1 and 2 for Port P2

Ports P1, P2

8-8

8.2.3 Port P1, P2 Interrupt Control Functions

Ports P1 and P2 use eight bits for interrupt flags, eight bits to enable interrupts,
eight bits to select the effective edge of an interrupt event, one interrupt vector
address for port P1, and one interrupt vector address for port P2.

Each signal uses three bits for configuration and interrupt:

� Interrupt flag, P1IFG.0 to P1IFG.7 and P2IFG.0 to P2IFG.7
� Interrupt enable bit, P1IE.0 to P1IE.7 and P2IE.0 to P2IE.7
� Interrupt edge select bit, P1IES.0 to P1IES.7 and P2IES.0 to P2IES.7

The interrupt flags P1IFG.0 to P1IFG.7 source one interrupt and P2IFG.0 to
P2IFG.7 source one interrupt. Any interrupt event on one or more pins of P1.0
to P1.7 or P2.0 to P2.7 requests an interrupt when two conditions are met: the
appropriate individual bit PnIE.x is set, and the GIE bit is set. Interrupt flags
P1IFG.0 to P1IFG.7 or P2IFG.0 to P2IFG.7 are not automatically reset. The
software of the interrupt service routine should handle the detection of the
source, and reset the appropriate flag when it is serviced.

Ports P3, P4, P5, P6

8-9Digital I/O Configuration

8.3 Ports P3, P4, P5, P6

General-purpose ports P3–P6 function as shown in Figure 8–3. Each pin can
be selected to operate with the I/O port function, or to be used with a different
peripheral module. This multiplexing of pins allows for a reduced pin count on
MSP430 devices.

Four registers control each of the ports (see Section 8.3.1).

Ports P3–P6 are connected to the processor core through the 8-bit MDB and
the MAB. They should be accessed with byte instructions using the absolute
address mode.

Figure 8–3. Ports P3–P6 Configuration

Input Register PnIN

Output Register PnOUT

Direction Register
PnDIR

Function Select
Register PnSEL

8 8R

R/W

8

8

R/W

R/W

MDB

MSB
Pn.7

LSB
Pn.0

n = 3: 019h
n = 4: 01Dh
n = 5: 031h
n = 6: 035h

n = 3: 01Ah
n = 4: 01Eh
n = 5: 032h
n = 6: 036h n = 3: 01Bh

n = 4: 01Fh
n = 5: 033h
n = 6: 037h

n = 3: 018h
n = 4: 01Ch
n = 5: 030h
n = 6: 034h

8.3.1 Port P3–P6 Control Registers

The four control registers of each port give maximum configuration flexibility
of digital I/O.

� All individual I/O bits are programmed independently
� Any combination of input is possible
� Any combination of port or module function is possible

The four registers for each port are shown in Table 8–3. They each contain
eight bits and should be accessed with byte instructions.

Ports P3, P4, P5, P6

8-10

Table 8–3.Port P3–P6 Registers

Register Short Form Address Register Type Initial State

Input P3IN 018h Read only – – – – –

P4IN 01Ch Read only – – – – –

P5IN 030h Read only – – – – –

P6IN 034h Read only – – – – –

Output P3OUT 019h Read/write Unchanged

P4OUT 01Dh Read/write Unchanged

P5OUT 031h Read/write Unchanged

P6OUT 035h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset

P4DIR 01Eh Read/write Reset

P5DIR 032h Read/write Reset

P6DIR 036h Read/write Reset

Port Select P3SEL 01Bh Read/write Reset

P4SEL 01Fh Read/write Reset

P5SEL 033h Read/write Reset

P6SEL 037h Read/write Reset

8.3.1.1 Input Registers

The input registers are read-only registers that reflect the signal at the I/O pins.

Note: Writing to Read-Only Register

Any attempt to write to these read-only registers results in an increased
current consumption while the write attempt is active.

8.3.1.2 Output Registers

The output registers show the information of the output buffers. The output
buffers can be modified by all instructions that write to a destination. If read,
the contents of the output buffer are independent of the pin direction. A
direction change does not modify the output buffer contents.

8.3.1.3 Direction Registers

The direction registers contain eight independent bits that define the direction
of each I/O pin. All bits are reset by the PUC signal.

When:

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

Ports P3, P4, P5, P6

8-11Digital I/O Configuration

8.3.1.4 Function Select Registers PnSEL

Ports P3–P6 pins are often multiplexed with other peripheral modules to
reduce overall pin count on MSP430 devices (see the specific device data
sheet to determine which other peripherals also use the device pins). Control
registers PnSEL are used to select the desired pin function—I/O port or other
peripheral module. Each register contains eight bits corresponding to each
pin, and each pin’s function is individually selectable. All bits in these registers
are reset by the PUC signal. The bit definitions are:

Bit = 0: Port function is selected for the pin

Bit = 1: Other peripheral module function is selected for the pin

Note: Function Select With PnSEL Registers

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set.
Therefore, the input signal can no longer generate an interrupt.

When a port pin is selected to be used as an input to a peripheral module other
than the I/O port (PnSEL.x=1), the actual input signal to the peripheral module
is a latched representation of the signal at the device pin (see Figure 8–4
schematic). The latch uses the PnSEL.x bit as its enable, so while PnSEL.x=1,
the internal input signal simply follows the signal at the pin. However, if the
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the
other peripheral module) represents the value of signal at the device pin, just
prior to the bit being reset.

8.3.2 Port P3–P6 Schematic

The pin logic of each individual port signal is shown in Figure 8–4.

Figure 8–4. Schematic of Bits Pn.x

Pad Logic
Pn.x

Output
MUX

Output
MUX

PnIN.x

PnSEL.x

PnDIR.x

EN

A
YModule x IN

Module x OUT

PnOUT.x

Direction Control
From Module

n = 3 for Port3, 4 for Port P4, 5 for Port P5, and 6 for Port P6
x = 0 to 7, according to bits 0 to 7

8-12

9-1Watchdog Timer

Watchdog Timer

This chapter discusses the Watchdog Timer.

Topic Page

9.1 The Watchdog Timer 9-2.

Chapter 9

The Watchdog Timer

9-2

9.1 The Watchdog Timer

The primary function of the watchdog-timer module (WDT) is to perform a
controlled-system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can work as an interval timer, to generate
an interrupt after the selected time interval. The WDT diagram is shown in
Figure 9–1.

Figure 9–1. Schematic of Watchdog Timer

IS0

SSEL

HOLD

NMIES

16b
Counter

Clear

4

A

B

CLK

NMI

TMSEL

CNTCL

IS1

SMCLK

ACLK

 Watchdog Timer
Control Register

16

MDB

LSB

MSB

1

1

A

Q6

Q9
Q13

Q15

3
2

1

(Asyn)

EN

Write Enable
Low Byte

Password
Cmp.

EQU

R/W

PUC

0

1

0

1

1

0

1

0

WDTCTL

Y
Int.
Flag

EQU

WDTQn

See Interrupt
Definition

PUC

WDTCNT

Pulse
Generator

Features of the Watchdog Timer include:

� Eight software-selectable time intervals

� Two operating modes: as watchdog or interval timer

� Expiration of the time interval in watchdog mode, which generates a
system reset; or in timer mode, which generates an interrupt request

� Safeguards which ensure that writing to the WDT control register is only
possible using a password

� Support of ultralow-power using the hold mode

The Watchdog Timer

9-3Watchdog Timer

9.1.1 Watchdog Timer Register

The watchdog-timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled through the
watchdog-timer control register (WDTCTL), shown in Figure 9–2, which is a
16-bit read/write register located at the low byte of word address 0120h. Any
read or write access must be done using word instructions with no suffix or .w
suffix. In both operating modes (watchdog or timer), it is only possible to write
to WDTCTL using the correct password.

Figure 9–2. Watchdog Timer Control Register

HOLD

7 0

rw–0

WDTCTL
0120h

NMINMIES TMSEL SSEL IS1 IS0CNTCL

rw–0 rw–0 rw–0 r0(w) rw–0 rw–0 rw–0

15 8

069h

05Ah

WDTCTL
Read

WDTCTL
Write

Bits 0, 1: Bits IS0 and IS1 select one of four taps from the WDTCNT, as
described in Table 9–1. Assuming fcrystal = 32,768 Hz and
fSystem = 1 MHz, the following intervals are possible:

Table 9–1.WDTCNT Taps

SSEL IS1 IS0 Interval [ms]

0 1 1 0.064 tSMCLK × 26

0 1 0 0.5 tSMCLK × 29

1 1 1 1.9 tACLK × 26

0 0 1 8 tSMCLK × 213

1 1 0 16.0 tACLK × 29

0 0 0 32 tSMCLK × 215 <– Value after PUC (reset)

1 0 1 250 tACLK × 213

1 0 0 1000 tACLK × 215

Bit 2: The SSEL bit selects the clock source for WDTCNT.
SSEL = 0: WDTCNT is clocked by SMCLK .
SSEL = 1: WDTCNT is clocked by ACLK.

Bit 3: Counter clear bit. In both operating modes, writing a 1 to this bit
restarts the WDTCNT at 00000h. The value read is not defined.

Bit 4: The TMSEL bit selects the operating mode: watchdog or timer.
TMSEL = 0: Watchdog mode
TMSEL = 1: Interval-timer mode

The Watchdog Timer

9-4

Bit 5: The NMI bit selects the function of the RST/NMI input pin. It is
cleared by the PUC signal.
NMI = 0: The RST/NMI input works as reset input.

As long as the RST/NMI pin is held low, the internal
signal is active (level sensitive).

NMI = 1: The RST/NMI input works as an edge-sensitive
nonmaskable interrupt input.

Bit 6: If the NMI function is selected, this bit selects the activating edge
of the RST/NMI input. It is cleared by the PUC signal.
NMIES = 0: A rising edge triggers an NMI interrupt.
NMIES = 1: A falling edge triggers an NMI interrupt.
CAUTION: Changing the NMIES bit with software can generate

an NMI interrupt.

Bit 7: This bit stops the operation of the watchdog counter. The clock
multiplexer is disabled and the counter stops incrementing. It holds
the last value until the hold bit is reset and the operation continues.
It is cleared by the PUC signal.
HOLD = 0: The WDT is fully active.
HOLD = 1: The clock multiplexer and counter are stopped.

9.1.1.1 Accessing the WDTCTL (Watchdog Timer Control Register)

The WDTCTL register can be read or written to. As illustrated in Figure 9–3,
WDTCTL can be read without the use of a password. A read access is
performed by accessing word address 0120h. The low byte contains the value
of WDTCTL. The value of the high byte is always read as 069h.

Figure 9–3. Reading WDTCTL

0

15 0

r

WDTCTL
0120h Read Data

rw-x, (w)

1 1 0 1 0 0 1

78

r r r r r r r
6 9

Write access to WDTCTL, illustrated in Figure 9–4, is only possible using the
correct high-byte password. To change register WDTCTL, write to word
address 0120h. The low byte contains the data to write to WDTCTL. The high
byte is the password, which is 05Ah. A system reset (PUC) is generated if any
value other than 05Ah is written to the high byte of address 0120h.

Figure 9–4. Writing to WDTCTL

0

15 0

(w)

WDTCTL
0120h Write Data

rw-x, (w)

1 0 1 1 0 1 0

78

5 A
(w) (w) (w) (w) (w) (w) (w)

The Watchdog Timer

9-5Watchdog Timer

9.1.2 Watchdog Timer Interrupt Control Functions

The Watchdog Timer (WDT) uses two bits in the SFRs for interrupt control.

� The WDT interrupt flag (WDTIFG) (located in IFG1.0, initial state is reset)
� The WDT interrupt enable (WDTIE) (located in IE1.0, initial state is reset)

When using the watchdog mode, the WDTIFG flag is used by the reset
interrupt service routine to determine if the watchdog caused the device to
reset. If the flag is set, then the Watchdog Timer initiated the reset condition
(either by timing out or by a security key violation). If the flag is cleared, then
the PUC was caused by a different source. See chapter 3 for more details on
the PUC and POR signals.

When using the Watchdog Timer in interval-timer mode, the WDTIFG flag is
set after the selected time interval and a watchdog interval-timer interrupt is
requested. The interrupt vector address in interval-timer mode is different from
that in watchdog mode. In interval-timer mode, the WDTIFG flag is reset
automatically when the interrupt is serviced.

The WDTIE bit is used to enable or disable the interrupt from the Watchdog
Timer when it is being used in interval-timer mode. Also, the GIE bit enables
or disables the interrupt from the Watchdog Timer when it is being used in
interval-timer mode.

9.1.3 Watchdog Timer Operation

The WDT module can be configured in two modes: watchdog and the interval-
timer modes.

9.1.3.1 Watchdog Mode

When the WDT is configured to operate in watchdog mode, both a watchdog
overflow and a security violation trigger the PUC signal, which automatically
clears the appropriate system register bits. This results in a system
configuration for the WDTCTL bits where the WDT is set into the watchdog
mode and the RST/NMI pin is switched to the reset configuration.

After a power-on reset or a system reset, the WDT module automatically
enters the watchdog mode and all bits in the WDTCTL register and the
watchdog counter (WDTCNT) are cleared. The initial conditions at register
WDTCTL cause the WDT to start running at a relatively-low frequency, due to
the range of the digitally-controlled oscillator (DCO) automatically being set in
these situations. Since the WDTCNT is reset, the user software has ample
time to set up or halt the WDT and to adjust the system frequency. Users must
refer to the specific data sheets and the clock-system chapter of this manual
to determine the details of the clocking circuit on the MSP430 device chosen.

The Watchdog Timer

9-6

When the module is used in watchdog mode, the software should periodically
reset the WDTCNT by writing a 1 to bit CNTCL of WDTCTL to prevent
expiration of the selected time interval. If a software problem occurs and the
time interval expires because the counter is no longer being reset, a system
reset is generated and a system PUC signal is activated. The system restarts
at the same program address that follows a power up. The cause of reset can
be determined by testing bit 0 of interrupt flag register 1 in the SFRs. The
appropriate time interval is selected by setting bits SSEL, IS0, and IS1
accordingly.

9.1.3.2 Timer Mode

Setting WDTCTL register bit TMSEL to 1 selects the timer mode. This mode
provides periodic interrupts at the selected time interval. A time interval can
also be initiated by writing a 1 to bit CNTCL in the WDTCTL register.

When the WDT is configured to operate in timer mode, the WDTIFG flag is set
after the selected time interval, and it requests a standard interrupt service.
The WDT interrupt flag is a single-source interrupt flag and is automatically
reset when it is serviced. The enable bit remains unchanged. In interval-timer
mode, the WDT interrupt-enable bit and the GIE bit must be set to allow the
WDT to request an interrupt. The interrupt vector address in timer mode is
different from that in watchdog mode.

Note: Watchdog Timer, Changing the Time Interval

Changing the time interval without clearing the WDTCNT may result in an
unexpected and immediate system reset or interrupt. The time interval must
be changed together with a counter-clear command using a single
instruction (for example, MOV #05A0Ah,&WDTCTL).

Changing the clock source during normal operation may result in an incorrect
interval. The timer should be halted before changing the clock source.

9.1.3.3 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking circuit on the MSP430 device determine
how the Watchdog Timer and clocking signals should be configured. Review
the device data sheet and clock-system chapter to determine the clocking
circuit, clock signals, and low-power modes available. For example, the WDT
should not be configured in watchdog mode with SMCLK as its clock source
if the user wants to use low-power mode 3 because SMCLK is not active in
LPM3, therefore the WDT would not function properly.

The WDT hold condition can also be used to support low power operation. The
hold condition can be used in conjunction with low-power modes when
needed.

The Watchdog Timer

9-7Watchdog Timer

9.1.3.4 Software Example

The following example illustrates the watchdog-reset operation.

; After RESET or power–up, the WDTCTL register and WDTCNT
; are cleared and the initial operating conditions are
; watchdog mode with a time interval of 32 ms.

;
;Constant definitions:

;

 WDTCTL .EQU 0120h ; Address of Watchdog Timer

 WDTPW .EQU 05A00h; Password
 T250MS .EQU 5 ; SSEL, IS0, IS1 set to 250 ms

 T05MS .EQU 2 ; SSEL, IS0, IS1 set to 0.5 ms

 CNTCL .EQU 8 ; Bit position to reset WDTCNT

 TMSEL .EQU 010h ; Bit position to select timer mode

;

; As long as watchdog mode is selected, watchdog reset has
; to be done periodically through an instruction e.g.:

;
........

........

MOV #WDTPW+CNTCL,&WDTCTL
;
; To change to timer mode and a time interval of 250 ms,
; the following instruction sequence can be used:
;

MOV #WDTPW+CNTCL+TMSEL+T250MS,&WDTCTL

; Clear WDTCNT and

; select 250 ms and timer

; mode
........
........

; Note: The time interval and clear of WDTCNT should be
; modified within one instruction to avoid
; unexpected reset or interrupt
;
; Switching back to watchdog mode and a time interval of
; 0.5 ms is performed by:

;
........
........

MOV #WDTPW+CNTCL,&WDTCTL ; Reset WDT counter
;

MOV #WDTPW+T05MS,&WDTCTL ; Select watchdog mode
; and 0.5 ms

........

9-8

10-1Timer_A

Timer_A

This section describes the basic functions of the MSP430 general-purpose
16-bit Timer_A. All capture/compare blocks (CCR) are identical. All
MSP430x1xx devices have three CCRs (Timer_A3) implemented.

Note: Use of the Word Count

Throughout this chapter, the word count is used in the text. As used in these
instances, it refers to the literal act of counting. It means that the counter must
be in the process of counting for the action to take place. If a particular value
is directly written to the counter, then the associated action will not take place.
For example, the CCR0 interrupt flag is set when the timer counts up to the
value in CCR0. The counter must count from CCR0–1 to CCR0. If the CCR0
value were simply written directly to the timer with software, the interrupt flag
would not be set, even though the values in the timer and the CCR0 registers
are the same.

Topic Page

10.1 Introduction 10-2.

10.2 Timer_A Operation 10-4.

10.3 Timer Modes 10-7.

10.4 Capture/Compare Blocks 10-13.

10.5 The Output Unit 10-19.

10.6 Timer_A Registers 10-24.

10.7 Timer_A UART 10-33.

Chapter 10

Introduction

10-2

10.1 Introduction

Timer_A is an extremely versatile timer made up of :

� 16-bit counter with 4 operating modes

� Selectable and configurable clock source

� Three or five independently configurable capture/compare registers with
configurable inputs

� Three or five individually configurable output modules with 8 output modes

Timer_A can support multiple, simultaneous, timings; multiple capture/
compares; multiple output waveforms such as PWM signals; and any
combination of these. Also, each capture/compare register has hardware
support for implementing serial communications such as UART protocol (see
section 10.7).

Additionally, Timer_A has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers on captures or compares. Each capture/compare
block is individually configurable and can produce interrupts on compares or
on rising, falling, or both edges of an external capture signal.

The block diagram of Timer_A is shown in Figure 10–1.

Introduction

10-3Timer_A

Figure 10–1. Timer_A Block Diagram

Input
Divider CLK

1

16-Bit Timer

TPSSEL0TPSSEL1

TACLK

ACLK
SMCLK

0
1
2

3
RC

INCLK

ID1 ID0

15 0

Data
Timer Clock

POR/CLR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TAIFG

16-Bit Timer

Capture
Mode

CCIS00CCIS01

CCI0A

CCI0B

GND

0
1
2

3
VCC

CCI0 CCM00CCM01

Capture/Compare
Register CCR0

15 0

Comparator 0

Output Unit 0

OM02 OM00OM01

Out 0Capture

EQU0

Capture/Compare Register CCR0

Timer Bus

Capture
Mode

CCIS10CCIS11

CCI1A

CCI1B

GND

0
1
2

3
VCC

CCI1 CCM10CCM11

Capture/Compare
Register CCR1

15 0

Comparator 1

Output Unit 1

OM12 OM10OM11

Out 1
Capture

EQU1

Capture/Compare Register CCR1

Capture
Mode

CCIS20CCIS21

CCI2A

CCI2B

GND

0

1
2

3
VCC

CCI2 CCM20CCM21

Capture/Compare
Register CCR2

15 0

Comparator 2

Output Unit 2

OM22 OM20OM21

Out 2
Capture

EQU2

Capture/Compare Register CCR2

Timer_A Operation

10-4

10.2 Timer_A Operation

The 16-bit timer has 4 modes of operation selectable with the MC0 and MC1
bits in the TACTL register. The timer increments or decrements (depending on
mode of operation) with each rising edge of the clock signal. The timer can be
read or written to with software. Additionally, the timer can generate an
interrupt with its ripple-carry output when it overflows.

10.2.1 Timer Mode Control

The timer has four modes of operation as shown in Figure 10–2 and described
in Table 10–1: stop, up, continuous, and up/down. The operating mode is
software selectable with the MC0 and MC1 bits in the TACTL register.

Figure 10–2. Mode Control

CLK
16-Bit Timer

RC

15 0

Data

POR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TAIFG

0
0
1
1

0
1
0
1

Stop Mode
Up Mode
Continuous Mode
Up/Down Mode

Timer Clock

Table 10–1.Timer Modes

Mode Control

MC1 MC0 Mode Description

0 0 Stop The timer is halted.

0 1 Up The timer counts upward until value is equal to
value of compare register CCR0.

1 0 Continuous The timer counts upward continuously.

1 1 Up/Down The timer counts up until the timer value is
equal to compare register 0 and then it counts
down to zero.

Timer_A Operation

10-5Timer_A

10.2.2 Clock Source Select and Divider

The timer clock can be sourced from internal clocks (i.e. ACLK or SMCLK) or
from an external source (TACLK) as shown in Figure 10–3. The clock source
is selectable with the SSEL0 and SSEL1 bits in the TACTL register. It is
important to note that when changing the clock source for the timer, errant
timings can occur. For this reason stopping the timer before changing the clock
source is recommended.

The selected clock source may be passed directly to the timer or divided by
2,4, or 8, as shown in Figure 10–4. The ID0 and ID1 bits in the TACTL register
select the clock division. Note that the input divider is reset by a POR signal
(see chapter 3, System, Resets, Interrupts, and Operating Modes for more
information on the POR signal) or by setting the CLR bit in the TACTL register.
Otherwise, the input divider remains unchanged when the timer is modified.
The state of the input divider is invisible to software.

Figure 10–3. Schematic of 16-Bit Timer

Input
Divider

CLK
16-Bit Timer

SSEL0SSEL1

TACLK

ACLK

SMCLK

0

1

2

3

RC

INCLK

ID1 ID0

0 15

DataTimer Clock

POR/CLR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TAIFG

0
0
1
1

0
1
0
1

Pass
1/2
1/4
1/8

0
0
1
1

0
1
0
1

Stop Mode
Up Mode
Continuous Mode
Up/Down Mode

Figure 10–4. Schematic of Clock Source Select and Input Divider

T Q 16-Bit Timer Clock

ID1

C

T Q

C

T Q

C

ID0 POR CLR

0
0
1
1

0
1
0
1

Pass
1/2
1/4
1/8

Input DividerSSEL0SSEL1

TACLK

ACLK

SMCLK

0

1

2

3INCLK

Timer_A Operation

10-6

10.2.3 Starting the Timer

The timer may be started or restarted in a variety of ways:

� Release Halt Mode: The timer counts in the selected direction when a
timer mode other than stop mode is selected with the MCx bits.

� Halted by CCR0 = 0, restarted by CCR0 > 0 when the mode is either up
or up/down: When the timer mode is selected to be either up or up/down,
the timer may be stopped by writing 0 to capture/compare register 0
(CCR0). The timer may then be restarted by writing a nonzero value to
CCR0. In this scenario, the timer starts incrementing in the up direction
from zero.

� Setting the CLR bit in TACTL register: Setting the CLR bit in the TACTL
register clears the timer value and input clock divider value. The timer
increments upward from zero with the next clock cycle as long as
stop-mode is not selected with the MCx bits.

� TAR is loaded with 0: When the counter (TAR register) is loaded with zero
with a software instruction the timer increments upward from zero with the
next clock cycle as long as stop-mode is not selected with the MCx bits.

Timer Modes

10-7Timer_A

10.3 Timer Modes

10.3.1 Timer—Stop Mode

Stopping and starting the timer is done simply by changing the mode control
bits (MCx). The value of the timer is not affected.

When the timer is stopped from up/down mode and then restarted in up/down
mode, the timer counts in the same direction as it was counting before it was
stopped. For example, if the timer is in up/down mode and counting in the down
direction when the MCx bits are reset, when they are set back to the up/down
direction, the timer starts counting in the down direction from its previous
value. If this is not desired in an application, the CLR bit in the TACTL register
can be used to clear this direction memory feature.

10.3.2 Timer—Up Mode

The up mode is used if the timer period must be different from the 65,536
(16-bit) clock cycles of the continuous mode period. The capture/compare
register CCR0 data define the timer period.

The counter counts up to the content of compare register CCR0, as shown in
Figure 10–5. When the timer value and the value of compare register CCR0
are equal (or if the timer value is greater than the CCR0 value), the timer
restarts counting from zero.

Figure 10–5. Timer Up Mode

0FFFFh

0h

CCR0

Flag CCIFG0 is set when the timer equals the CCR0 value. The TAIFG flag is
set when the timer counts from CCR0 to zero. All interrupt flags are set
independently of the corresponding interrupt enable bit, but an interrupt is
requested only if the corresponding interrupt enable bit and the GIE bit are set.
Figure 10–6 shows the flag set cycle.

Figure 10–6. Up Mode Flag Setting

CCR0–1 CCR0 0h 1h CCR0–1 CCR0 0h 1h

Timer
Clock

Timer

Set Flag
TAIFG

Set Flag
CCIFG0

Timer Modes

10-8

10.3.2.1 Timer in Up Mode—Changing the Period Register CCR0 Value

Changing the timer period register CCR0 while the timer is running can be a
little tricky. When the new period is greater than or equal to the old period, the
timer simply counts up to the new period and no special attention is required
(see Figure 10–7). However, when the new period is less than the old period,
the phase of the timer clock during the CCR0 update affects how the timer
reacts to the new period.

If the new, smaller period is written to CCR0 during a high phase of the timer
clock, then the timer rolls to zero (or begins counting down when in the
up/down mode) on the next rising edge of the timer clock. However, if the new,
smaller period is written during a low phase of the timer clock, then the timer
continues to increment with the old period for one more clock cycle before
adopting the new period and rolling to zero (or beginning counting down). This
is shown in Figure 10–8.

Figure 10–7. New Period > Old Period

2 0
ÏÏÏÏÏ
ÏÏÏÏÏ

0 1 1 2 3 0 1 2 3 0 1

2 3

CCR0old = 2
CCR0new = 3

3

2

1

0

CCR0

Timer
Register

Figure 10–8. New Period < Old Period

CCR0old = 5
CCR0new = 2

Timer
Register

5
4
3
2
1
0

0 1 2 3 4 5 0 1 2 3 0 1 2 0 1 2 0 1

5 2

0 1 2 3 4 5 0 1 2 3 4 0 1 2 0 1 2 0 1

5 2

Timer
Register

5
4
3
2
1
0

CCR0old = 5
CCR0new = 2

CCR0 CCR0

CCR0 Loaded With 2 During High Clock Phase CCR0 Loaded With 2 During Low Clock Phase

Timer Clock

Timer

CCR0

Timer Clock

Timer

CCR0

n 0 or n–1†

CCRold CCRnew CCRold CCRnew

n n+1 0 or n†

Load New CCR0
During High Phase of Clock

Load New CCR0
During Low Phase of Clock

† Up mode: 0; up/down mode: n–1 † Up mode: 0; up/down mode: n

Timer Modes

10-9Timer_A

10.3.3 Timer—Continuous Mode

The continuous mode is used if the timer period of 65,536 clock cycles is used
for the application. A typical application of the continuous mode is to generate
multiple, independent timings. In continuous mode, the capture/compare
register CCR0 works in the same way as the other compare registers.

The capture/compare registers and different output modes of each output unit
are useful to capture timer data based on external events or to generate
various different types of output signals. Examples of the different output
modes used with timer-continuous mode are shown in Figure 10–25.

In continuous mode, the timer starts counting from its present value. The
counter counts up to 0FFFFh and restarts by counting from zero as shown in
Figure 10–9.

Figure 10–9. Timer—Continuous Mode

0FFFFh

0h

The TAIFG flag is set when the timer counts from 0FFFFh to zero. The interrupt
flag is set independently of the corresponding interrupt enable bit, as shown
in Figure 10–10. An interrupt is requested if the corresponding interrupt enable
bit and the GIE bit are set.

Figure 10–10. Continuous Mode Flag Setting

FFFE FFFF 0h 1h FFFE 0h 1h

Timer
Clock

Timer

Set Interrupt
Flag TAIFG

FFFF

Timer Modes

10-10

10.3.3.1 Timer—Use of the Continuous Mode

The continuous mode can be used to generate time intervals for the
application software. Each time an interval is completed, an interrupt can be
generated. In the interrupt service routine of this event, the time until the next
event is added to capture/compare register CCRx as shown in Figure 10–11.
Up to five independent time events can be generated using all five
capture/compare blocks.

Figure 10–11.Output Unit in Continuous Mode for Time Intervals

∆t

CCR0a

CCR0b

CCR0c

CCR0d
CCR0e

CCR0f

CCR0h

CCR0i

CCR0j
CCR0k

CCR0l

∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t

0FFFFh

0h

Interrupt Events

CCR0g
CCR0m

Time intervals can be produced with other modes as well, where CCR0 is used
as the period register. Their handling is more complex since the sum of the old
CCRx data and the new period can be higher than the CCR0 value. When the
sum CCRxold plus ∆t is greater than the CCR0 data, the CCR0 value must be
subtracted to obtain the correct time interval. The period is twice the value in
the CCR0 register.

10.3.4 Timer—Up/Down Mode

The up/down mode is used if the timer period must be different from the 65,536
clock cycles, and if symmetrical pulse waveform generation is needed. In
up/down mode, the timer counts up to the content of compare register CCR0,
then back down to zero, as shown in Figure 10–12. The period is twice the
value in the CCR0 register.

Figure 10–12. Timer Up/Down Mode

0h

CCR0

Timer Modes

10-11Timer_A

The up/down mode also supports applications that require dead times
between output signals. For example, to avoid overload conditions, two
outputs driving an H-bridge must never be in a high state simultaneously. In
the following example (see Figure 10–13), the tdead is:

tdead = ttimer × (CCR1 – CCR2)=

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

CCRx Content of capture/compare register x

Figure 10–13. Output Unit in Up/Down Mode (II)

0FFFFh

CCR0

CCR1

0h

TAIFG
EQU2

EQU1

Output Mode 6: PWM Toggle/Set

Output Mode 2: PWM Toggle/Reset

EQU0 EQU2
EQU1

EQU2

Dead Time

EQU1
EQU2

TAIFG EQU1
EQU0

Interrupt Events

CCR2

The count direction is always latched with a flip-flop (Figure 10–14). This is
useful because it allows the user to stop the timer and then restart it in the same
direction it was counting before it was stopped. For example, if the timer was
counting down when the MCx bits were reset, then it will continue counting in
the down direction if it is restarted in up/down mode. If this is not desired, the
CLR bit in the TACTL register must be used to clear the direction. Note that the
CLR bit affects other setup conditions of the timer. Refer to Section 10.6 for a
discussion of the Timer_A registers.

Figure 10–14. Timer Up/Down Direction Control

Set

D Q

Reset

POR CLR
in TACTL

Up/Down For
16-Bit Timer TAR
Low: Down Direction
High: Up Direction

Up/Down Mode

TAR => CCR0

Timer Clock

Timer Modes

10-12

In up/down mode, the interrupt flags (CCIFG0 and TAIFG) are set at equal time
intervals (Figure 10–15). Each flag is set only once during the period, but they
are separated by 1/2 the timer period. CCIFG0 is set when the timer counts
from CCR0–1 to CCR0, and TAIFG is set when the timer completes counting
down from 0001h to 0000h. Each flag is capable of producing a CPU interrupt
when enabled.

Figure 10–15. Up/Down Mode Flag Setting

CCR0–1 CCR0 2h 1h 0h 1h

Timer
Clock

Timer

Set
TAIFG

Set
CCIFG0

CCR0–1 CCR0–2

Up/Down

10.3.4.1 Timer In Up/Down Mode—Changing the Value of Period Register CCR0

Changing the period value while the timer is running in up/down mode is even
trickier than in up mode. Like in up mode, the phase of the timer clock when
CCR0 is changed affects the timer’s behavior. Additionally, in up/down mode,
the direction of the timer also affects the behavior.

If the timer is counting in the up direction when the new period is written to
CCR0, the conditions in the up/down mode are identical to those in the up
mode. See Section 10.3.2.1 for details. However, if the timer is counting in the
down direction when CCR0 is updated, it continues its descent until it reaches
zero. The new period takes effect only after the counter finishes counting down
to zero. See Figure 10–16.

Figure 10–16. Altering CCR0—Timer in Up/Down Mode

0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 2 1 0 1 2 1 0 1 2 3 4 5 4 3 2 1 0 1 2 1

5 4 2 5 2

5
4
3
2
1
0

Timer
Register

2CCR0

Timer Modes

10-13Timer_A

10.4 Capture/Compare Blocks

Three or five (depending on device) identical capture/compare blocks (shown
in Figure 10–17) provide flexible control for real-time processing. Any one of
the blocks may be used to capture the timer data at an applied event, or to
generate time intervals. Each time a capture occurs or a time interval is
completed, interrupts can be generated from the applicable capture/compare
register. The mode bit CAPx, in control word CCTLx, selects the compare or
capture operation and the capture mode bits CCMx1 and CCMx0 in control
word CCTLx define the conditions under which the capture function is
performed.

Both the interrupt enable bit CCIEx and the interrupt flag CCIFGx are used for
capture and compare modes. CCIEx enables the corresponding interrupt.
CCIFGx is set on a capture or compare event.

The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals. MSP430x1xx devices may have different signals connected to CCIxA
and CCIxB. The data sheet should always be consulted to determine the
Timer_A connections for a particular device.

Figure 10–17. Capture/Compare Blocks

Capture
Mode

EN

CCISx0CCISx1

CCIxA
CCIxB

GND

0

1
2

3
VCC

CCMx1 CCMx0

Capture/Compare Register
CCRx

Set_CCIFGx

0
0
1
1

0
1
0
1

Disabled
Positive Edge
Negative Edge
Both Edges

Logic

Capture
15 0

Comparator x

0

1

CAPx

A
Y

CCIx

SCCIx

Timer Bus
COVx

Overflow x

CAPx

EQUx

Timer Modes

10-14

10.4.1 Capture/Compare Block—Capture Mode

The capture mode is selected if the mode bit CAPx, located in control word
CCTLx, is set. The capture mode is used to fix time events. It can be used for
speed computations or time measurements. The timer value is copied into the
capture register (CCRx) with the selected edge (positive, negative, or both) of
the input signal. Captures may also be initiated by software as described in
section 10.4.1.1.

If a capture is performed:

� The interrupt flag CCIFGx, located in control word CCTLx, is set.

� An interrupt is requested if both interrupt enable bits CCIEx and GIE are
set.

The input signal to the capture/compare block is selected using control bits
CCISx1 and CCISx0, as shown in Figure 10–18. The input signal can be read
at any time by the software by reading bit CCIx. The input signal may also be
latched with compare signal EQUx (see SCCIx bit below) when in compare
mode. This feature was designed specifically to support implementing serial
communications with Timer_A. See section 10.7 for more details on using
Timer_A as a UART.

Figure 10–18. Capture Logic Input Signal

Capture
Mode

EN

CCISx0CCISx1

CCIxA
CCIxB

GND

0

1
2

3
VCC

CCMx1 CCMx0

Set_CCIFGx

0
0
1
1

0
1
0
1

Disabled
Positive Edge
Negative Edge
Both Edges

1

0

CAPx

A
Y

CCIx

SCCIx

EQUx
CMPx

Synchronize
Capture

Timer
Clock

0

1

CaptureSCSx

The capture signal can also be synchronized with the timer clock to avoid race
conditions between the timer data and the capture signal. This is illustrated in
Figure 10–19. The bit SCSx in capture/compare control register CCTLx
selects the capture signal synchronization.

Timer Modes

10-15Timer_A

Figure 10–19. Capture Signal

n-2

Timer
Clock

Timer

Set
CCIFGx

Capture

ÎÎÎ
ÎÎÎ

n+1

CCIx

n-1 n+2 n+3 n+4 n+5 n+6n

Applications with slow timer clocks can use the nonsynchronized capture
signal. In this scenario the software can validate the data and correct it if
necessary as shown in the following example:

; Software example for the handling of asynchronous
; capture signals
;
; The data of the capture/compare register CCRx are taken
; by the software in the according interrupt routine
; – they are taken only after a CCIFG was set.
; The timer clock is much slower than the system clock
; SMCLK.
;
CCRx_Int_hand... ; Start of interrupt

; handler
...
...
CMP &CCRx,&TAR ; Test if the data

; CCRX = TAR
JEQ Data_Valid
MOV &TAR,&CCRx ; The data in CCRx is

; wrong, use the timer data
Data_Valid ; The data in CCRx are valid

...

...
RETI

;

Overflow logic is provided with each capture/compare register to flag the user
if a second capture is performed before data from the first capture was read
successfully. Bit COVx in register CCTLx is set when this occurs as shown in
Figure 10–20.

Timer Modes

10-16

Figure 10–20. Capture Cycle

Second
Capture
Taken

COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV

in Register CCTL

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Overflow bit COVx is reset by the software as described in the following
example:

; Software example for the handling of captured data
; looking for overflow condition
;
; The data of the capture/compare register CCRx are taken
; by the software and immediately with the next
; instruction the overflow bit is tested and a decision is
; made to proceed regularly or with an error handler
;
CCRx_Int_hand ... ; Start of handler Interrupt

...

...
MOV &CCRx,RAM_Buffer
BIT #COV,&CCTLx
JNZ Overflow_Hand

...

...

...
RETI

Overflow_Hand BIC #COV,&CCTLx ; reset capture
; overflow flag
; get back to lost
; synchronization

...

...
; RETI

Note: Capture With Timer Halted

The capture should be disabled when the timer is halted. The sequence to
follow is: stop the capture, then stop the timer. When the capture function is
restarted, the sequence should be: start the capture, then start the timer.

Timer Modes

10-17Timer_A

10.4.1.1 Capture/Compare Block, Capture Mode—Capture Initiated by Software

In addition to internal and external signals, captures can be initiated by
software. This is useful for various purposes, such as:

� To measure time used by software routines
� To measure time between hardware events
� To measure the system frequency

Two bits, CCISx1 and CCISx0, and the capture mode selected by bits CCMx1
and CCMx0 are used by the software to initiate the capture. The simplest
realization is when the capture mode is selected to capture on both edges of
CCIx and bit CCISx1 is set. Software then toggles bit CCISx0 to switch the
capture signal between VCC and GND, initiating a capture each time the input
is toggled, as shown in Figure 10–21.

Figure 10–21. Software Capture Example

Capture
Mode

CCISx0CCISx1

CCIxA
CCIxB

GND

0

1
2

3
VCC

CCMx1 CCMx0

CMPx

CCIx

CCISx1

CCISx0

CCIx

Capture

Capture

Both Edges Selected 1 1

The following is a software example of a capture performed by software:

; The data of capture/compare register CCRx are taken
; by the software. It is assumed that CCMx1, CCMx0, and
; CCISx1 bits are set. Bit CCIS0 selects the CCIx
; signal to be high or low.
;

...

...
XOR #CCISx0, &CCTLx
...
...
...

Timer Modes

10-18

10.4.2 Capture/Compare Block—Compare Mode

The compare mode is selected if the CAPx bit, located in control word CCTLx,
is reset. In compare mode all the capture hardware circuitry is inactive and the
capture-mode overflow logic is inactive.

The compare mode is most often used to generate interrupts at specific time
intervals or used in conjunction with the output unit to generate output signals
such as PWM signals. If the timer becomes equal to the value in compare
register x, then:

� Interrupt flag CCIFGx, located in control word CCTLx, is set.

� An interrupt is requested if interrupt enable bits CCIEx and GIE are set.

� Signal EQUx is output to the output unit. This signal affects the output
OUTx, depending on the selected output mode.

The EQU0 signal is true when the timer value is greater or equal to the CCR0
value. The EQU1 to EQU4 signals are true when the timer value is equal to
the corresponding CCR1 to CCR4 values.

Timer Modes

10-19Timer_A

10.5 The Output Unit

Each capture/compare block contains an output unit shown in Figure 10–22.
The output unit is used to generate output signals such as PWM signals. Each
output unit has 8 operating modes that can generate a variety of signals based
on the EQU0 and EQUx signals. The output mode is selected with the OMx
bits located in the CCTLx register.

Figure 10–22. Output Unit

D Q

Reset

POR

OUTx

Set

Timer Clock

OUTx

OUTx Signal

EQU0
EQUx

OMx2
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

Output mode: OUTx signal reflects the value of the OUTx bit
Set mode: OUT x signal reflects the value of signal EQUx
PWM toggle/reset: EQUx toggles OUTx. EQU0 resets OUTx.
PWM set/reset: EQUx sets OUTx. EQU0 resets OUTx
Toggle: EQUx toggles OUTx signal.
Reset: EQUx resets OUTx.
PWM toggle/set: EQUx toggles OUTx. EQU0 sets OUTx.
PWM reset/set: EQUx resets OUTx. EQUx sets OUTx.

OMx1 OMx0
0
1
0
1
0
1
0
1

Output
Control
Block

Note: OUTx signal updates with rising edge of timer clock for all modes except
mode 0.
Modes 2, 3, 6, 7 not useful for output unit 0.

Timer Modes

10-20

10.5.1 Output Unit—Output Modes

The output modes are defined by the OMx bits and are discussed below. The
OUTx signal is changed with the rising edge of the timer clock for all modes
except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0.

Output mode 0: Output mode:
The output signal OUTx is defined by the OUTx bit in control
register CCTLx. The OUTx signal updates immediately
upon completion of writing the bit information.

Output mode 1: Set mode:
The output is set when the timer value becomes equal to
capture/compare data CCRx. It remains set until a reset of
the timer, or until another output mode is selected that
controls the output.

Output mode 2: PWM toggle/reset mode:
The output is toggled when the timer value becomes equal
to capture/compare data CCRx. It is reset when the timer
value becomes equal to CCR0.

Output mode 3: PWM set/reset mode:
The output is set when the timer value becomes equal to
capture/compare data CCRx. It is reset when the timer value
becomes equal to CCR0.

Output mode 4: Toggle mode:
The output is toggled when the timer value becomes equal
to capture/compare data CCRx. The output period is double
the timer period.

Output mode 5: Reset mode:
The output is reset when the timer value becomes equal to
capture/compare data CCRx. It remains reset until another
output mode is selected that controls the output.

Output mode 6: PWM toggle/set mode:
The output is toggled when the timer value becomes equal
to capture/compare data CCRx. It is set when the timer
value becomes equal to CCR0.

Output mode 7: PWM toggle/set mode:
The output is reset when the timer value becomes equal to
capture/compare data CCRx. It is set when the timer value
becomes equal to CCR0.

Timer Modes

10-21Timer_A

10.5.2 Output Control Block

The output control block prepares the value of the OUTx signal, which is
latched into the OUTx flip-flop with the next positive timer clock edge, as shown
in Figure 10–23 and Table 10–2. The equal signals EQUx and EQU0 are
sampled during the negative level of the timer clock, as shown in Figure 10–23.

Figure 10–23. Output Control Block

The timer is Incremented with the rising edge of the timer clock.

Timer
Clock

Timer
TAR

EQUx

EQU0

EQU0, Delayed
Used in Up Mode Only

TAR = n

CCRx = n

n–2 n–1 n n+1 FFFF or CCR0 0 1

TAR = 0
or

TAR = CCR0

EQU0 delayed is used in up mode, not EQU0. EQU0 is active high when
TAR = CCR0. EQU0 delayed is active high when TAR = 0.

D Q

Reset

POR

OUTx

Set

Timer Clock

OUTx

OUTx Signal

EQU0
EQUx

OMx2 OMx1 OMx0

Output
Control
Block

Timer Modes

10-22

Table 10–2.State of OUTx at Next Rising Edge of Timer Clock

Mode EQU0 EQUx D

0 x x x(OUTx bit)

1 x
x

0
1

OUTx (no change)
1 (set)

2 0
0
1
1

0
1
0
1

OUTx (no change)
OUTx (toggle)
0 (reset)
1 (set)

3 0
0
1
1

0
1
0
1

OUTx (no change)
1 (set)
0 (reset)
1 (set)

4 x
x

0
1

OUTx (no change)
OUTx (toggle)

5 x
x

0
1

OUTx (no change)
0 (reset)

6 0
0
1
1

0
1
0
1

OUTx (no change)
OUTx (toggle)
1 (set)
0 (reset)

7 0
0
1
1

0
1
0
1

OUTx (no change)
0 (reset)
1 (set)
0 (reset)

10.5.3 Output Examples

The following are some examples of possible output signals using the various
timer and output modes.

10.5.3.1 Output Examples—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the CCRx value, and
rolls from CCR0 to zero, depending on the output mode, as shown in
Figure 10–24.

Timer Modes

10-23Timer_A

Figure 10–24. Output Examples—Timer in Up Mode

Example, EQU1 Used0FFFFh

CCR0

CCR1

0h

EQU0 EQU1 EQU0 EQU1 EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

Interrupt Events

10.5.3.2 Output Examples—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the CCRx and CCR0
values, depending on the output mode, as shown in Figure 10–25.

Figure 10–25. Output Examples—Timer in Continuous Mode

0FFFFh

CCR0

CCR1

0h

TAOV EQU1 EQU0 EQU1 EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

TAOV Interrupt Events

Timer_A Registers

10-24

10.5.3.3 Output Examples—Timer in Up/Down Mode

The OUTx signal changes when the timer equals CCRx in either count
direction and when the timer equals CCR0, depending on the output mode, as
shown in Figure 10–26.

Figure 10–26. Output Examples—Timer in Up/Down Mode (I)

0FFFFh

CCR0

CCR2

0h

TIMOV
EQU2

EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

EQU2
TIMOV

EQU2
EQU0

EQU2 Interrupt Events

10.6 Timer_A Registers

The Timer_A registers, described in Table 10–3, are word-structured and must
be accessed using word instructions.

Table 10–3.Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 160h POR reset

Timer_A register TAR Read/write 170h POR reset

Cap/com control 0 CCTL0 Read/write 162h POR reset

Capture/compare 0 CCR0 Read/write 172h POR reset

Cap/com control 1 CCTL1 Read/write 164h POR reset

Capture/compare 1 CCR1 Read/write 174h POR reset

Cap/com control 2 CCTL2 Read/write 166h POR reset

Capture/compare 2 CCR2 Read/write 176h POR reset

Timer_A Registers

10-25Timer_A

10.6.1 Timer_A Control Register TACTL

The timer and timer operation control bits are located in the timer control
register (TACTL) shown in Figure 10–27. All control bits are reset automati–
cally by the POR signal, but are not affected by the PUC signal. The control
register must be accessed using word instructions.

Figure 10–27. Timer_A Control Register TACTL

rw-
(0)

15 0

Unused
Input

Select
Input

Divider
Mode
Control

Un-
used

CLR TAIE TAIFG
TACTL

160h

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw
(0)

rw-
(0)

rw-
(0)

rw-
(0)

w-
(0)

Bit 0: TAIFG: This flag indicates a timer overflow event.
Up mode: TAIFG is set if the timer counts from CCR0

value to 0000h.
Continuous mode: TAIFG is set if the timer counts from

0FFFFh to 0000h.
Up/down mode: TAIFG is set if the timer counts down from

0001h to 0000h.

Bit 1: Timer overflow interrupt enable (TAIE) bit. An interrupt request from
the timer overflow bit is enabled if this bit is set, and is disabled if
reset.

Bit 2: Timer clear (CLR) bit. The timer and input divider are reset with the
POR signal, or if bit CLR is set. The CLR bit is automatically reset
and is always read as zero. The timer starts in the upward direction
with the next valid clock edge, unless halted by cleared mode
control bits.

Bit 3: Not used

Bits 4, 5: Mode control: Table 10–4 describes the mode control bits.

Table 10–4.Mode Control

MC1 MC0 Count Mode Description

0 0 Stop Timer is halted.

0 1 Up to CCR0 Timer counts up to CCR0 and restarts at 0.

1 0 Continuous up Timer counts up to 0FFFFh and restarts at 0.

1 1 Up/down Timer continuously counts up to CCR0 and back
down to 0.

Bits 6, 7: Input divider control bits. Table 10–5 describes the input divider
control bits.

Timer_A Registers

10-26

Table 10–5.Input Clock Divider Control Bits

ID1 ID0 Operation Description

0 0 /1 Input clock source is passed to the timer.

0 1 /2 Input clock source is divided by two.

1 0 /4 Input clock source is divided by four.

1 1 /8 Input clock source is divided by eight.

Bits 8, 9: Clock source selection bits. Table 10–6 describes the clock source
selections.

Table 10–6.Clock Source Selection

SSEL1 SSEL0 O/P Signal Comment

0 0 TACLK See data sheet device description.

0 1 ACLK Auxiliary clock ACLK is used.

1 0 SMCLK System clock SMCLK.

1 1 INCLK See device description in data sheet.

Bits 10 to 15: Unused

Note: Changing Timer_A Control Bits

If the timer operation is modified by the control bits in the TACTL register, the
timer should be halted during this modification. Critical modifications are the
input select bits, input divider bits, and the timer clear bit. Asynchronous
clocks, input clock, and system clock can result in race conditions where the
timer reacts unpredictably.

The recommended instruction flow is:

1) Modify the control register and stop the timer.

2) Start the timer operation.

For example:

MOV #01C6,&TACTL ; ACLK/8, timer stopped, timer cleared

BIS #10h,&TACTL ; Start timer with up mode

10.6.2 Timer_A Register TAR

The TAR register is the value of the timer.

Figure 10–28. TAR Register

rw-(0)

15 0
TAR

170h Timer Value

rw-(0) rw-(0) rw-(0)rw-(0) rw-(0) rw-(0)rw-(0)rw-(0)rw-(0)rw-(0)rw-(0) rw-(0)rw-(0) rw-(0)rw-(0)

Timer_A Registers

10-27Timer_A

Note: Modifying Timer_A Register TAR

When ACLK, SMCLK, or the external clock TACLK or INCLK is selected for
the timer clock, any write to timer register TAR should occur while the timer
is not operating; otherwise, the results may be unpredictable. In this case,
the timer clock is asynchronous to the CPU clock MCLK and critical race
conditions exist.

10.6.3 Capture/Compare Control Register CCTLx

Each capture/compare block has its own control word CCTLx, shown in
Figure 10–29. The POR signal resets all bits of CCTLx; the PUC signal does
not affect these bits.

Figure 10–29. Capture/Compare Control Register CCTLx

rw-(0)

15 0
Input

Select
CCIE OUT COV CCIFG

CCTLx
162h to 166h

Capture
Mode

SCS SCCI Unused CAP OUTMODx CCI

rrw-(0) rw-(0) rw-(0)rw-(0) rw-(0) r-(0) rw-(0)rw-(0)rw-(0)rw-(0)rw-(0) rw-(0)rw-(0) rw-(0)

Bit 0: Capture/compare interrupt flag CCIFGx
Capture mode:

If set, it indicates that a timer value was captured in the
CCRx register.

Compare mode:
If set, it indicates that a timer value was equal to the data
in the CCRx register.

CCIFG0 flag:
CCIFG0 is automatically reset when the interrupt request
is accepted.

CCIFG1 to CCIFG4 flags:
The flag that caused the interrupt is automatically reset
after the TAIV word is accessed. If the TAIV register is not
accessed, the flags must be reset with software.

No interrupt is generated if the corresponding interrupt
enable bit is reset, but the flag will be set. In this scenario,
the flag must be reset by the software.

Setting the CCIFGx flag with software will request an
interrupt if the interrupt-enable bit is set.

Bit 1: Capture overflow flag COV
Compare mode selected, CAP = 0:

Capture signal generation is reset. No compare event will
set COV bit.

Capture mode selected, CAP = 1:
The overflow flag COV is set if a second capture is
performed before the first capture value is read. The
overflow flag must be reset with software. It is not reset by
reading the capture value.

Bit 2: The OUTx bit determines the value of the OUTx signal if the
output mode is 0.

Timer_A Registers

10-28

Bit 3: Capture/compare input signal CCIx:
The selected input signal (CCIxA, CCIxB, VCC. or GND) can be
read by this bit. See Figure 10–18.

Bit 4: Interrupt enable CCIEx: Enables or disables the interrupt
request signal of capture/compare block x. Note that the GIE bit
must also be set to enable the interrupt.
0: Interrupt disabled
1: Interrupt enabled

Bits 5 to 7: Output mode select bits:
Table 10–7 describes the output mode selections.

Table 10–7.Capture/Compare Control Register Output Mode

Bit
Value Output Mode Description

0 Output only The OUTx signal reflects the value of the OUTx bit

1 Set EQUx sets OUTx

2 PWM toggle/reset EQUx toggles OUTx. EQU0 resets OUTx.

3 PWM set/reset EQUx sets OUTx. EQU0 resets OUTx

4 Toggle EQUx toggles OUTx signal.

5 Reset EQUx resets OUTx.

6 PWM toggle/set EQUx toggles OUTx. EQU0 sets OUTx.

7 PWM reset/set EQUx resets OUTx. EQU0 sets OUTx.

Note: OUTx updates with rising edge of timer clock for all modes except mode 0.
Modes 2, 3, 6, 7 not useful for output unit 0.

Bit 8: CAP sets capture or compare mode.
0: Compare mode
1: Capture mode

Bit 9: Read only, always read as 0.

Bit 10: SCCIx bit:
The selected input signal (CCIxA, CCIxB, VCC, or GND) is
latched with the EQUx signal into a transparent latch and can be
read via this bit.

Bit 11: SCSx bit:
This bit is used to synchronize the capture input signal with the
timer clock.
0: asynchronous capture
1: synchronous capture

Bits 12, 13: Input select, CCIS0 and CCIS1:
These two bits define the capture signal source. These bits are
not used in compare mode.
0 Input CCIxA is selected
1 Input CCIxB is selected
2 GND
3 VCC

Timer_A Registers

10-29Timer_A

Bits 14, 15: Capture mode bits:
Table 10–8 describes the capture mode selections.

Table 10–8.Capture/Compare Control Register Capture Mode

Bit
Value Capture Mode Description

0 Disabled The capture mode is disabled.

1 Positive Edge Capture is done with rising edge.

2 Negative Edge Capture is done with falling edge.

3 Both Edges Capture is done with both rising and falling edges.

Note: Simultaneous Capture and Capture Mode Selection

Captures must not be performed simultaneously with switching from
compare to capture mode. Otherwise, the result in the capture/compare
register will be unpredictable.

The recommended instruction flow is:

1) Modify the control register to switch from compare to capture.

2) Capture

For example:

BIS #CAP,&CCTL2 ; Select capture with register CCR2

XOR #CCIS1,&CCTL2 ; Software capture: CCIS0 = 0

; Capture mode = 3

10.6.4 Timer_A Interrupt Vector Register

Two interrupt vectors are associated with the 16-bit Timer_A module:

� CCR0 interrupt vector (highest priority)

� TAIV interrupt vector for flags CCIFG1–CCIFGx and TAIFG.

10.6.4.1 CCR0 Interrupt Vector

The interrupt flag associated with capture/compare register CCR0, as shown
in Figure 10–30, is set if the timer value is equal to the compare register value.

Figure 10–30. Capture/Compare Interrupt Flag

D Q

Reset

Set

CCIE0

Timer Clock
CAP

EQU0
CCR0 = Timer

Capture

IRQ, Interrupt_Service_Requested

IRACC, Interrupt_Request_Accepted

Capture/compare register 0 has the highest Timer_A interrupt priority, and
uses its own interrupt vector.

Timer_A Registers

10-30

10.6.4.2 Vector Word, TAIFG, CCIFG1 to CCIFG4 Flags

The CCIFGx (other than CCIFG0) and TAIFG interrupt flags are prioritized and
combined to source a single interrupt as shown in Figure 10–31. The interrupt
vector register TAIV (shown in Figure 10–32) is used to determine which flag
requested an interrupt.

Figure 10–31. Schematic of Capture/Compare Interrupt Vector Word

S

S
Sel

R

CCI1
EQ1

CMP1
Timer Clock

IRACC

CCIE1

CCIFG1

S

S
Sel

R

CCI2
EQ2

CMP2
Timer Clock

IRACC

CCIE2

CCIFG2

S

S
Sel

R

CCI3
EQ3

CMP3
Timer Clock

IRACC

CCIE3

CCIFG3

Priority and
Vector Word
Generator

Interrupt_Service_Request

Interrupt_Vector_Address

Figure 10–32. Vector Word Register

r0

15 0
TAIV
12Eh 0

r0 r0 r0 r0 r0 r0 r0 r0 r0 r0 r0 r0

0 0 0 0 0 0 0 0 0 0 Interrupt Vector 0

r-(0) r-(0) r-(0)

0

The flag with the highest priority generates a number from 2 to 12 in the TAIV
register as shown in Table 10–9. (If the value of the TAIV register is 0, no
interrupt is pending.) This number can be added to the program counter to
automatically enter the appropriate software routine without the need for
reading and evaluating the interrupt vector. The software example in section
10.6.4.3 shows this technique.

Timer_A Registers

10-31Timer_A

Table 10–9.Vector Register TAIV Description

Interrupt
Priority Interrupt Source Short Form

Vector Register
TAIV Contents

Highest† Capture/compare 1 CCIFG1 2

Capture/compare 2 CCIFG2 4

Reserved 6

Reserved 8

Timer overflow TAIFG 10

Reserved 12

Lowest Reserved 14

No interrupt pending 0
† Highest pending interrupt other than CCIFG0. CCIFG0 is always the highest priority Timer_A

interrupt.

Accessing the TAIV register automatically resets the highest pending interrupt
flag. If another interrupt flag is set, then another interrupt will be immediately
generated after servicing the initial interrupt. For example, if both CCIFG1 and
CCIFG2 are set, when the interrupt service routine accesses the TAIV register
(either by reading it or by adding it directly to the PC), CCIFG1 will be reset
automatically. After the RETI instruction of the interrupt service routine is
executed, the CCIFG2 flag will generate another interrupt.

Note: Writing to Read-Only Register TAIV

Register TAIV should not be written to. If a write operation to TAIV is
performed, the interrupt flag of the highest-pending interrupt is reset.
Therefore, the requesting interrupt event is missed. Additionally, writing to
this read-only register results in increased current consumption as long as
the write operation is active.

10.6.4.3 Timer Interrupt Vector Register, Software Example

The following software example describes the use of vector word TAIV and the
handling overhead. The numbers at the right margin show the necessary
cycles for every instruction. The example is written for continuous mode: the
time difference to the next interrupt is added to the corresponding compare
register.

; Software example for the interrupt part Cycles
;
; Interrupt handler for Capture/Compare Module 0.
; The interrupt flag CCIFG0 is reset automatically
;
TIMMOD0 ... ; Start of handler Interrupt latency 6

RETI 5
;
; Interrupt handler for Capture/Compare Modules 1 to 4.
; The interrupt flags CCIFGx and TAIFG are reset by
; hardware. Only the flag with the highest priority
; responsible for the interrupt vector word is reset.
TIM_HND $; Interrupt latency 6

ADD &TAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP TIMMOD1 ; Vector 2: Module 1 2

Timer_A Registers

10-32

JMP TIMMOD2 ; Vector 4: Module 2 2
RETI ; Reserved 2
RETI ; Reserved 2

;
; Module 5. Timer Overflow Handler: the Timer Register is
; expanded into the RAM location TIMEXT (MSBs)
;
TIMOVH ; Vector 10: TIMOV Flag

INC TIMEXT ; Handle Timer Overflow 4
RETI 5

;
TIMMOD2 ; Vector 4: Module 2

ADD #NN,&CCR2 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

;
;
TIMMOD1 ; Vector 2: Module 1

ADD #MM,&CCR1 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5
.SECT ”VECTORS”,0FFF0h ; Interrupt Vectors

; The vector address may be different for different
; devices.
;

.WORD TIM_HND ; Vector for Capture/Compare
; Module 1..4 and timer overflow
; TAIFG

.WORD TIMMOD0 ; Vector for Capture/Compare
; Module 0

If the CPU clock MCLK was turned off (CPUOFF=1), then two or three
additional cycles need to be added for synchronous start of the CPU. The delta
of one clock cycle is caused when clocks are asynchronous to the restart of
CPU clock MCLK.

The software overhead for different interrupt sources includes interrupt
latency and return-from-interrupt cycles (but not the task handling itself), as
described:

� Capture/compare block CCR0 11 cycles
� Capture/compare blocks CCR1 to CCR4 16 cycles
� Timer overflow TAIFG 14 cycles

10.6.4.4 Timing Limits

With the TAIV register and the previous software, the shortest repetitive time
distance tCRmin between two events using a compare register is:

tCRmin = ttaskmax + 16 × tcycle

With: ttaskmax Maximum (worst case) time to perform the task during the
interrupt routine (for example, incrementing a counter)

tcycle Cycle time of the system frequency MCLK

The shortest repetitive time distance tCLmin between two events using a
capture register is:

tCLmin = ttaskmax + 16 x tcycle

Timer_A UART

10-33Timer_A

10.7 Timer_A UART

The Timer_A is uniquely capable of implementing a UART function, with the
following features:

� Automatic start-bit detection – even from ultralow-power modes

� Hardware baud-rate generation

� Hardware latching of RXD and TXD data

� Baud rates of 75 to 115,200 baud

� Full-duplex operation

This UART implementation is different from other microcontroller
implementations where a UART may be implemented with general-purpose
I/O and manual bit manipulation via software polling. Those implementations
require great CPU overhead and therefore increase power consumption and
decrease the usability of the CPU.

The transmit feature uses one compare function to shift data through the
output unit to the selected pin. The baud rate is ensured by reconfiguring the
compare data with each interrupt.

Timer_A UART

10-34

The receive feature uses one capture/compare function to shift pin data into
memory through bit SCCIx. The receive start time is recognized by capturing
the timer data with the negative edge of the input signal. The same
capture/compare block is then switched to compare mode and the receive bits
are latched automatically with the EQUx signal. The interrupt routine collects
the bits for later software processing. Figure 10–33 illustrates the UART
implementation.

Figure 10–33. UART Implementation

Set, EQUx set OUTx signal clock synchronized with timer clock
Reset, EQUx resets OUTx signal clock synchronized with
timer clock

Capture
Mode

EN

CCISx0CCISx1

CCIxA

CCIxB

GND

0

1

2

3
VCC

CCMx1 CCMx0

Capture/Compare Register
CCRx

Set_CCIFGx

0
0
1
1

0
1
0
1

Disabled
Positive Edge
Negative Edge
Both Edges

Logic

15 0

Comparator x

0

1

CAPx

A
Y

CCIx

SCCIx

Timer Bus
COVx

Overflow x

CAPx

D Q

Reset

Transmit Data Path

Set

Timer Clock

OUTx Signal

0
1

0
0

1
1

OMx2 OMx0OMx1

Capture

EQUx

Receive Data Path

Timer_A UART

10-35Timer_A

One capture/compare block is used when half-duplex communication mode
is desired. Two capture/compare blocks are used for full-duplex mode.
Figure 10–34 illustrates the capture/compare timing for the UART.

Figure 10–34. Timer_A UART Timing

URXD Signal

Capture
Compare

Receive

UTXD Signal

Transmit

Capture

Compare
Compare

Compare
Compare Compare

Compare Compare

Compare
Compare

Compare
Compare

Compare
Compare

Compare
Compare

A complete application note including connection diagrams and complete soft-
ware listing may be found at www.ti.com/sc/msp430.

10-36

11-1Timer_B

Timer_B

This section describes the basic functions of the MSP430 general-purpose
16-bit Timer_B. Timer_B implementation differs among MSP430 devices.
Always check the device’s data sheet to determine the connections and the
number of identical capture/compare registers. Also, the data sheets use
additional nomenclature to indicate the number of capture/compare registers
implemented for a specific device. For example, if Timer_B3 is discussed in
a data sheet, then that device’s implementation of Timer_B contains 3
capture/compare registers.

In its default condition, Timer_B operates identically to Timer_A, except the
SCCI bit is not implemented on Timer_B.

Note: Use of the Word Count

Throughout this chapter, the word count is used in the text. As used in these
instances, it refers to the literal act of counting. It means that the counter must
be in the process of counting for the action to take place. If a particular value
is directly written to the counter, then the associated action will not take place.
For example, the CCR0 interrupt flag is set when the timer counts up to the
value in CCR0 compare latch TBCL0. The counter must count from
TBCL0 –1 to TBCL0. If the TBCL0 value were simply written directly to the
timer with software, the interrupt flag would not be set, even though the
values in the timer and TBCL0 would be the same.

Topic Page

11.1 Introduction 11-2.

11.2 Timer_B Operation 11-5.

11.3 Timer Modes 11-8.

11.4 Capture/Compare Blocks 11-15.

11.5 The Output Unit 11-23.

11.6 Timer_B Registers 11-29.

Chapter 11

Introduction

11-2

11.1 Introduction

Timer_B is an extremely versatile timer made up of :

� 16-bit counter with 4 operating modes and four selectable lengths (8-bit,
10-bit, 12-bit, or 16-bit)

� Selectable and configurable clock source

� Up to seven independently-configurable capture/compare registers with
configurable inputs and double-buffered compare registers.

� Up to seven individually-configurable output modules with eight output
modes

Timer_B can support multiple, simultaneous, timings; multiple capture/
compares; multiple output waveforms such as PWM signals; and any
combination of these. In addition, with the double-buffering of compare data,
multiple PWM periods can be updated simultaneously.

Additionally, Timer_B has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers on captures or compares. Each capture/compare
block is individually configurable and can produce interrupts on compares or
on rising, falling or both edges of an external capture signal.

The block diagram of Timer_B is shown in Figure 11–1.

11.1.1 Similarities and Differences From Timer_A

Timer_B is almost identical to Timer_A (except for a few enhancements noted
below) and operates identically to Timer_A in its default condition.

Timer_B is different from Timer_A in the following ways:

1) The length of Timer_B is programmable to be 8, 10, 12, or 16 bits, where-
as Timer_A is only a 16-bit timer.

2) The SCCI bit functionality of the capture/compare registers of Timer_A is
not implemented in Timer_B.

3) The function of the capture/compare registers for the compare mode of
Timer_B has changed slightly.

4) On some devices a pin is implemented to put all Timer_B outputs into a
high-impedance state. Check the device data sheet for the presence of
this pin.

On Timer_A, the capture/compare register CCRx holds the data for the
comparison to the timer value. On Timer_B, each CCRx acts as a buffer for
a compare latch, and the compare latch holds the data used for the
comparison. So, compare data is written to each CCRx in both timers;
however, in Timer_B, the compare data is then transferred to the compare
latch for the comparison. The timing of the transfer of the compare data from

Introduction

11-3Timer_B

each CCRx register to the corresponding compare latch (TBCLx) is user-
selectable to be either immediate, or on a timer event. See section 11.4.2.1 for
a complete discussion on using and configuring the compare latches.

The addition of the compare latch gives the user more control over when
exactly a compare period updates. In addition, multiple compare latches may
be grouped together allowing the compare period of multiple compare
registers to be updated simultaneously. This is useful for example when there
is a need to change the period or duty cycle of multiple PWM signals
simultaneously.

It is useful to note that in Timer_B’s default condition, the compare data is
immediately transferred from each CCRx register to the corresponding
compare latch. Therefore, in the default condition, the compare mode of
Timer_B functions identically to the compare mode of Timer_A.

Introduction

11-4

Figure 11–1. Timer_B Block Diagram

Input
Divider

CLK1
16-Bit Timer

TPSSEL0TPSSEL1

TBCLK

ACLK
SMCLK

0
1
2

3

RC

INCLK

ID1 ID0

15 0

DataTimer Clock

POR/CLR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TBIFG

16-Bit Timer

Capture
Mode

CCIS00CCIS01

CCI0A

CCI0B

GND

0
1
2

3
VCC

CCI0 CCM00CCM01

Capture/Compare
Register CCR0

15 0

TBCL0
Compare Latch

15 0 Output Unit 0

OM02 OM00OM01

Out 0Capture

EQU0

Capture/Compare Register CCR0

Timer Bus

Capture
Mode

CCIS10CCIS11

CCI1A

CCI1B

GND

0
1
2

3
VCC

CCI1 CCM10CCM11

Capture/Compare
Register CCR1

15 0

TBCL1
Comparator Latch

15 0 Output Unit 1

OM12 OM10OM11

Out 1
Capture

EQU0

Capture/Compare Register CCR1

Capture
Mode

CCIS60CCIS61

CCI6A

CCI6B

GND

0
1
2

3
VCC

CCI6 CCM60CCM61

Capture/Compare
Register CCR6

15 0

15 0 Output Unit 6

OM62 OM60OM61

Out 6
Capture

EQU0

Capture/Compare Register CCR6

Comparator 0
EQU0

Comparator 1
EQU1

Comparator 6
EQU6

Module 2

Module 3

Module 4

Module 5

8, 10, 12. or 16-Bit

TBCL6
Compare Latch

Timer_B Operation

11-5Timer_B

11.2 Timer_B Operation

The 16-bit timer has four modes of operation selectable with the MC0 and MC1
bits in the TBCTL register and four selectable lengths, also configured in the
TBCTL register. The timer increments or decrements (depending on mode of
operation) with each rising edge of the clock signal. The timer can be read or
written to with software. Additionally, the timer can generate an interrupt with
its ripple-carry output when it overflows.

11.2.1 Timer Length

Timer_B is configurable to operate as a true 8-bit, 10-bit, 12-bit, or 16-bit timer.
The length of the counter is configured in the TBCTL register. Leading bits are
read as zero in 8-bit, 10-bit, and 12-bit mode. Data written to the TBR register
in 8-bit, 10-bit, and 12-bit mode will show leading 0s. The maximum count
value, TBR(max), for the various lengths is:

Timer B Config ration TBRTimer_B Configuration TBR(max)

16-bit 0FFFFh

12-bit 0FFFh

10-bit 03FFh

8-bit 0FFh

11.2.2 Timer Mode Control

The timer has four modes of operation as shown in Figure 11–2 and described
in Table 11–1: stop, up, continuous, and up/down. The operating mode is
software selectable with the MC0 and MC1 bits in the TBCTL register.

Figure 11–2. Mode Control

CLK
16-Bit Timer†

RC

15 0

Data

POR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TBIFG

0
0
1
1

0
1
0
1

Stop Mode
Up Mode
Continuous Mode
Up/Down Mode

Timer Clock

† Length is selectable for 8-, 10-, 12-, or 16-bit operation.

Timer_B Operation

11-6

Table 11–1. Timer Modes

Mode Control

MC1 MC0 Mode Description

0 0 Stop The timer is halted.

0 1 Up The timer counts upward until its value is equal to
the value of compare latch TBCL0.
Note: If TBCL0 > TBR(max), the counter counts to
zero with the next rising edge of timer clock.

1 0 Continuous The timer counts upward continuously.
The maximum value of TBR [TBR(max)] is:

0FFFFh for 16-bit configuration
00FFFh for 12-bit configuration
003FFh for 10-bit configuration
000FFh for 8-bit configuration

1 1 Up/Down The timer counts up until the timer value is equal
to compare latch 0 and then it counts down to zero.
Note: If TBCL0 > TBR(max), the counter operates
as if it were configured for continuous mode. It will
not count down from TBR(max) to zero.

11.2.3 Clock Source Select and Divider

The timer clock can be sourced from internal clocks (i.e. ACLK, MCLK or
SMCLK) or from an external source (TBCLK) as shown in Figure 11–3. The
clock source is selectable with the SSEL0 and SSEL1 bits in the TBCTL
register. It is important to note, that when changing the clock source for the
timer, errant timings can occur. For this reason stopping the timer before
changing the clock source is recommended.

The selected clock source may be passed directly to the timer or divided by
2,4, or 8, as shown in Figure 11–4. The ID0 and ID1 bits in the TBCTL register
select the clock division. Note that the input divider is reset by a POR signal
or by setting the CLR bit in the TBCTL register (see chapter 3, System Resets,
Interrupts, and Operating Modes, for more information on the POR signal).
Otherwise, the input divider remains unchanged when the timer is modified.
The state of the input divider is invisible to software.

Figure 11–3. Schematic of 16-Bit Timer

Input
Divider

CLK
16-Bit Timer†

SSEL0SSEL1

TBCLK

ACLK

SMCLK

0

1

2

3

RC

INCLK

ID1 ID0

0 15

DataTimer Clock

POR/CLR

Mode
Control

MC1 MC0

Equ0

Carry/Zero Set_TBIFG

0
0
1
1

0
1
0
1

Pass
1/2
1/4
1/8

0
0
1
1

0
1
0
1

Stop Mode
Up Mode
Continuous Mode
Up/Down Mode

† Length is selectable for 8-, 10-, 12-, or 16-bit operation.

Timer_B Operation

11-7Timer_B

Figure 11–4. Schematic of Clock Source Select and Input Divider

T Q 16-Bit Timer Clock

ID1

C

T Q

C

T Q

C

ID0 POR CLR

0
0
1
1

0
1
0
1

Pass
1/2
1/4
1/8

Input DividerSSEL0SSEL1

TBCLK

ACLK

SMCLK

0

1

2

3INCLK

11.2.4 Starting the Timer

The timer may be started or restarted in a variety of ways:

� Release Halt Mode: The timer counts in the selected direction when a
timer mode other than stop mode is selected with the MCx bits.

� Halted by TBCL0 = 0, restarted by TBCL0 > 0 when the mode is either up
or up/down: When the timer mode is selected to be either up or up/down,
the timer may be stopped by loading 0 in compare latch 0 (TBCL0) via
capture/compare register (CCR0). The timer may then be restarted by
loading a nonzero value to TBCL0. In this scenario, the timer starts
incrementing in the up direction from zero.

� Setting the CLR bit in TBCTL register: Setting the CLR bit in the TBCTL
register clears the timer value and input clock divider value. The timer
increments upward from zero with the next clock cycle as long as
stop-mode is not selected with the MCx bits.

� TBR is loaded with 0: When the counter (TBR register) is loaded with zero
with a software instruction the timer increments upward from zero with the
next clock cycle as long as stop-mode is not selected with the MCx bits.

Timer Modes

11-8

11.3 Timer Modes

11.3.1 Timer—Stop Mode

Stopping and starting the timer is done simply by changing the mode control
bits (MCx). The value of the timer is not affected.

When the timer is stopped from up/down mode and then restarted in up/down
mode, the timer counts in the same direction as it was counting before it was
stopped. For example, if the timer is in up/down mode and counting in the down
direction when the MCx bits are reset, when they are set back to the up/down
direction, the timer starts counting in the down direction from its previous
value. If this is not desired in an application, the CLR bit in the TBCTL register
can be used to clear this direction memory feature.

11.3.2 Timer—Up Mode

The up mode is used if the timer period must be different from the TBR(max)
clock cycles of the continuous mode periods. The capture/compare register
CCR0 data defines the timer period.

The counter counts up to the content of compare latch TBCL0, as shown in
Figure 11–5. When the timer value and the value of compare latch TBCL0 are
equal (or if the timer value is greater than the TBCL0 value), the timer restarts
counting from zero.

Figure 11–5. Timer Up Mode

TBR(max)

0h

TBCL0

Flag CCIFG0 is set when the timer equals the TBCL0 value. The TBIFG flag
is set when the timer counts from TBCL0 to zero. All interrupt flags are set
independently of the corresponding interrupt enable bit, but an interrupt is
requested only if the corresponding interrupt enable bit and the GIE bit are set.
Figure 11–6 shows the flag set cycle.

Figure 11–6. Up Mode Flag Setting

TBCL0–1 TBCL0 0h 1h TBCL0–1 TBCL0 0h 1h

Timer Clock

Timer

Set Flag TBIFG

Set Flag CCIFG0

Timer Modes

11-9Timer_B

11.3.2.1 Timer in Up Mode—Changing the Period Register TBCL0 Value,
Immediate Mode for TBCL0

Changing the timer period register TBCL0 while the timer is running and when
the transfer mode from CCR0 is immediate can be a little tricky. When the new
period is greater than or equal to the old period, the timer simply counts up to
the new period and no special attention is required (see Figure 11–7).
However, when the new period is less than the old period, the phase of the
timer clock during the TBCL0 update affects how the timer reacts to the new
period.

If the new, smaller period is transferred from CCR0 to TBCL0 during a high
phase of the timer clock, then the timer rolls to zero (or begins counting down
when in the up/down mode) on the next rising edge of the timer clock.
However, if the new, smaller period is written during a low phase of the timer
clock, then the timer continues to increment with the old period for one more
clock cycle before adopting the new period and rolling to zero (or beginning
counting down). This is shown in Figure 11–8.

Note:

If TBCL0 > TBR(max), the counter rolls to zero with the next rising edge of
timer clock.

Figure 11–7. New Period > Old Period

2 0
ÏÏÏÏ
ÏÏÏÏ

0 1 1 2 3 0 1 2 3 0 1

2 3

TBCL0old = 2
TBCL0new = 3

3

2

1

0

TBCL0

Timer
Register

Timer Modes

11-10

Figure 11–8. New Period < Old Period

TBCL0old = 5
TBCL0new = 2

Timer
Register

5
4
3
2
1
0

0 1 2 3 4 5 0 1 2 3 0 1 2 0 1 2 0 1

5 2

0 1 2 3 4 5 0 1 2 3 4 0 1 2 0 1 2 0 1

5 2

Timer
Register

5
4
3
2
1
0

TBCL0old = 5
TBCL0new = 2

TBCL0 TBCL0

TBCL0 Loaded With 2 During High Clock Phase TBCL0 Loaded With 2 During Low Clock Phase

Timer Clock

Timer

TBCL0

Timer Clock

Timer

TBCL0

n 0 or n–1†

TBCLold TBCLnew TBCLold TBCLnew

n n+1 0 or n†

Load New TBCL0
During High Phase of Clock

Load New TBCL0
During Low Phase of Clock

† Up mode: 0; up/down mode: n–1 † Up mode: 0; up/down mode: n

11.3.3 Timer—Continuous Mode

The continuous mode is used if the timer period of TBR(max) clock cycles is
used for the application. A typical application of the continuous mode is to
generate multiple, independent timings. In continuous mode, the capture/
compare block 0 works in the same way as the other capture/compare blocks.

The capture/compare blocks and different output modes of each output unit
are useful to capture timer data based on external events or to generate
various different types of output signals. Examples of the different output
modes used with timer-continuous mode are shown in Figure 11–25.

In continuous mode, the timer starts counting from its present value. The
counter counts up to TBR(max) and restarts by counting from zero as shown
in Figure 11–9.

The maximum value of TBR [TBR(max)] in continuous mode is:
0FFFFh for 16-bit configuration
00FFFh for 12-bit configuration
003FFh for 10-bit configuration
000FFh for 8-bit configuration

Figure 11–9. Timer Continuous Mode

TBR(max)

0h

Timer Modes

11-11Timer_B

The TBIFG flag is set when the timer counts from TBR(max) to zero. The
interrupt flag is set independently of the corresponding interrupt enable bit, as
shown in Figure 11–10. An interrupt is requested if the corresponding interrupt
enable bit and the GIE bit are set.

Figure 11–10.Continuous Mode Flag Setting

TBR(max)–1

TBR(max) 0h 1h 0h 1h

Timer
Clock

Timer

Set Interrupt
Flag TBIFG

TBR(max)

TBR(max)–1

11.3.3.1 Timer—Use of the Continuous Mode

The continuous mode can be used to generate time intervals for the
application software. Each time an interval is completed, an interrupt can be
generated. In the interrupt service routine of this event, the time until the next
event is added to capture/compare register CCRx (and subsequently compare
latch TBCLx) as shown in Figure 11–11. Up to seven independent time events
can be generated using all seven capture/compare blocks.

Figure 11–11.Output Unit in Continuous Mode for Time Intervals

∆t

TBCL0a

TBCL0b

TBCL0c

TBCL0d
TBCL0e

TBCL0f

TBCL0h

TBCL0i

TBCL0j
TBCL0k

TBCL0l

∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t

TBR(max)

0h

Interrupt Events

TBCL0g
TBCL0m

Time intervals can be produced with other modes as well, where capture/
compare block 0 is used to determine the period. Their handling is more
complex since the sum of the old CCRx data and the new period can be higher
than the TBCL0 value. When the sum CCRxold plus ∆t is greater than the
TBCL0 data, the old CCR0 value must be subtracted to obtain the correct time
interval.

Timer Modes

11-12

11.3.4 Timer—Up/Down Mode

The up/down mode is used if the timer period must be different from the
TBR(max) clock cycles, and if symmetrical pulse waveform generation is
needed. In up/down mode, the timer counts up to the content of compare latch
TBCL0, then back down to zero, as shown in Figure 11–12. The period is twice
the value in the TBCL0 latch.

Note:

If TBCL0 > TBR(max), the counter operates as if it were configured for
continuous mode. It will not count down from TBR(max) to zero.

Figure 11–12.Timer Up/Down Mode

0h

TBCL0

The up/down mode also supports applications that require dead times
between output signals. For example, to avoid overload conditions, two
outputs driving an H-bridge must never be in a high state simultaneously. In
the following example (see Figure 11–13), the tdead is:

tdead = ttimer × (TBCL1 – TBCL3)=

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TBCLx Content of compare latch x

Note:

The dead time is ensured by the ability to simultaneously load the compare
latches.

Figure 11–13.Output Unit in Up/Down Mode (II)

TBCL0

TBCL1

0h

TBIFG
EQU3

EQU1

Output Mode 6: PWM Toggle/Set

Output Mode 2: PWM Toggle/Reset

EQU0 EQU3
EQU1

EQU3

Dead Time

EQU1
EQU3

TBIFG EQU1
EQU0

Interrupt Events

TBCL3

TBR(max)

Timer Modes

11-13Timer_B

The count direction is always latched with a flip-flop (Figure 11–14). This is
useful because it allows the user to stop the timer and then restart it in the same
direction it was counting before it was stopped. For example, if the timer was
counting down when the MCx bits were reset, then it will continue counting in
the down direction if it is restarted in up/down mode. If this is not desired, the
CLR bit in the TBCTL register must be used to clear the direction. Note that
the CLR bit affects other setup conditions of the timer. Refer to Section 11.6
for a discussion of the Timer_B registers.

Figure 11–14.Timer Up/Down Direction Control

Set

D Q

Reset

POR CLR
in TBCTL

Up/Down For
Timer TBR
Low: Down Direction
High: Up Direction

Up/Down Mode

TBR => TBCL0

Timer Clock

In up/down mode, the interrupt flags (CCIFG0 and TBIFG) are set at equal time
intervals (Figure 11–15). Each flag is set only once during the period, but they
are separated by 1/2 the timer period. CCIFG0 is set when the timer counts
from TBCL0–1 to TBCL0, and TBIFG is set when the timer completes counting
down from 0001h to 0000h. Each flag is capable of producing a CPU interrupt
when enabled.

Figure 11–15.Up/Down Mode Flag Setting

TBCL0–1 TBCL0 2h 1h 0h 1h

Timer
Clock

Timer

Set
TBIFG

Set
CCIFG0

TBCL0–1 TBCL0–2

Up/Down

11.3.4.1 Timer In Up/Down Mode—Changing the Value of Period Register TBCL0,
Immediate Mode for TBCL0

Changing the period value while the timer is running in up/down mode and the
transfer mode for TBCL0 is immediate is even trickier than in up mode. Like
in up mode, the phase of the timer clock when TBCL0 is changed affects the
timer’s behavior. Additionally, in up/down mode, the direction of the timer also
affects the behavior.

If the timer is counting in the up direction when the new period is transferred
from CCR0 to TBCL0, the conditions in the up/down mode are identical to

Timer Modes

11-14

those in the up mode. See Section 11.3.2.1 for details. However, if the timer
is counting in the down direction when TBCL0 is updated, it continues its
descent until it reaches zero. The new period takes effect only after the counter
finishes counting down to zero. See Figure 11–16.

Note:

If TBCL0 > TBR(max), the counter operates as if it were configured for
continuous mode. It will not count down from TBR(max) to zero.

Figure 11–16.Altering TBCL0—Timer in Up/Down Mode

0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 2 1 0 1 2 1 0 1 2 3 4 5 4 3 2 1 0 1 2 1

5 4 2 5 2

5
4
3
2
1
0

Timer
Register

2TBCL0

Timer Modes

11-15Timer_B

11.4 Capture/Compare Blocks

Seven identical capture/compare blocks (shown in Figure 11–17) provide
flexible control for real-time processing. Any one of the blocks may be used
to capture the timer data at an applied event, or to generate time intervals.
Each time a capture occurs or a time interval is completed, interrupts can be
generated from the applicable capture/compare register. The mode bit CAPx,
in control word CCTLx, selects the compare or capture operation and the
capture mode bits CCMx1 and CCMx0 in control word CCTLx define the
conditions under which the capture function is performed.

Both the interrupt enable bit CCIEx and the interrupt flag CCIFGx are used for
capture and compare modes. CCIEx enables the corresponding interrupt.
CCIFGx is set on a capture or compare event.

The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals. Different MSP430 devices may have different signals connected to
CCIxA and CCIxB. The data sheet should always be consulted to determine
the Timer_B connections for a particular device.

Figure 11–17.Capture/Compare Blocks

Capture
Mode

CCISx0CCISx1

CCIxA

CCIxB

GND

0

1

2

3
VCC

CCMx1 CCMx0

Capture/Compare Register
CCRx

Set_CCIFGx

Logic

Capture

15 0

Comparator x

0

1

CAPx

CCIx

COVx
Overflow x

CAPx

EQUx

CCMx1 CCMx0

0
0
1
1

0
1
0
1

Disabled
Positive Edge
Negative Edge
Both Edges

Compare Latch TBCLx

15 0

Load

POR

CLLD1
CLLD0

CAP

High
Zero

EQU0

Up/Down

Reset

Reset

Timer Modes

11-16

11.4.1 Capture/Compare Block—Capture Mode

The capture mode is selected if the mode bit CAPx, located in control word
CCTLx, is set. The capture mode is used to fix time events. It can be used for
speed computations or time measurements. The timer value is copied into the
capture register (CCRx) with the selected edge (positive, negative, or both) of
the input signal. Captures may also be initiated by software as described in
section 11.4.1.1.

If a capture is performed:

� The interrupt flag CCIFGx, located in control word CCTLx, is set.

� An interrupt is requested if both interrupt enable bits CCIEx and GIE are
set.

The input signal to the capture/compare block is selected using control bits
CCISx1 and CCISx0, as shown in Figure 11–18. The input signal can be read
at any time by the software by reading bit CCIx.

Figure 11–18.Capture Logic Input Signal

Capture
Mode

CCISx0CCISx1

CCIxA
CCIxB

GND

0

1
2

3
VCC

CCMx1 CCMx0

Set_CCIFGx

0
0
1
1

0
1
0
1

Disabled
Positive Edge
Negative Edge
Both Edges

1

0

CAPx

CCIx

EQUx
CMAx

Synchronize
Capture

Timer
Clock

0

1

CaptureSCSx

The capture signal can also be synchronized with the timer clock to avoid race
conditions between the timer data and the capture signal. This is illustrated in
Figure 11–19. The bit SCSx in capture/compare control register CCTLx
selects the capture signal synchronization.

Figure 11–19.Capture Signal

n-2

Timer
Clock

Timer

Set
CCIFGx

Capture

ÎÎÎ

n+1

CCIx

n-1 n+2 n+3 n+4 n+5 n+6n

Timer Modes

11-17Timer_B

Applications with slow timer clocks can use the nonsynchronized capture
signal. In this scenario the software can validate the data and correct it if
necessary as shown in the following example:

; Software example for the handling of asynchronous
; capture signals
;
; The data of the capture/compare register CCRx are taken
; by the software in the according interrupt routine
; – they are taken only after a CCIFG was set.
; The timer clock is much slower than the system clock
; MCLK.
;
CCRx_Int_hand... ; Start of interrupt

; handler
...
...
CMP &CCRx,&TBR ; Test if the data

; CCRX = TBR
JEQ Data_Valid
MOV &TBR,&CCRx ; The data in CCRx is

; wrong, use the timer data
Data_Valid ; The data in CCRx are valid

...

...
RETI

;

Overflow logic is provided with each capture/compare register to flag the user
if a second capture is performed before data from the first capture was read
successfully. Bit COVx in register CCTLx is set when this occurs as shown in
Figure 11–20.

Figure 11–20.Capture Cycle

Second
Capture
Taken

COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV

in Register CCTL

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Timer Modes

11-18

Overflow bit COVx is reset by the software as described in the following
example:

; Software example for the handling of captured data
; looking for overflow condition
;
; The data of the capture/compare register CCRx are taken
; by the software and immediately with the next
; instruction the overflow bit is tested and a decision is
; made to proceed regularly or with an error handler
;
CCRx_Int_hand ... ; Start of handler Interrupt

...

...
MOV &CCRx,RAM_Buffer
BIT #COV,&CCTLx
JNZ Overflow_Hand

...

... ; correct capture data

...
RETI

Overflow_Hand BIC #COV,&CCTLx ; reset capture
; overflow flag
; get back to lost
; synchronization

... ; Proceed

; RETI

Note: Capture With Timer Halted

The capture should be disabled when the timer is halted. The sequence to
follow is: stop the capture, then stop the timer. When the capture function is
restarted, the sequence should be: start the capture, then start the timer.

11.4.1.1 Capture/Compare Block, Capture Mode—Capture Initiated by Software

In addition to internal and external signals, captures can be initiated by
software. This is useful for various purposes, such as:

� To measure time used by software routines
� To measure time between hardware events
� To measure the system frequency

Two bits, CCISx1 and CCISx0, and the capture mode selected by bits CCMx1
and CCMx0 are used by the software to initiate the capture. The simplest
realization is when the capture mode is selected to capture on both edges of
CCIx and bit CCISx1 is set. Software then toggles bit CCISx0 to switch the
capture signal between VCC and GND, initiating a capture each time the input
is toggled, as shown in Figure 11–21.

Timer Modes

11-19Timer_B

Figure 11–21.Software Capture Example

Capture
Mode

CCISx0CCISx1

CCIxA
CCIxB

GND

0

1
2

3
VCC

CCMx1 CCMx0

CMPx

CCIx

CCISx1

CCISx0

CCIx

Capture

Capture

Both Edges Selected 1 1

The following is a software example of a capture performed by software:

; The data of capture/compare register CCRx are taken
; by the software. It is assumed that CCMx1, CCMx0, and
; CCISx1 bits are set. Bit CCIS0 selects the CCIx
; signal to be high or low.
;
;

...

...
XOR #CCISx0, &CCTLx
...
...
...

11.4.2 Capture/Compare Block—Compare Mode

The compare mode is selected if the CAPx bit, located in control word CCTLx,
is reset. In compare mode all the capture hardware circuitry is inactive and the
capture-mode overflow logic is inactive.

The compare mode is most often used to generate interrupts at specific time
intervals or used in conjunction with the output unit to generate output signals
such as PWM signals.

The compare data is double-buffered. The software writes the compare data
to the capture/compare register, but the data is transferred to the compare
latch TBCLx to be compared by the compare logic. The transfer of the compare
data from the CCRx register to the compare latch is user-selectable to be
either immediate or dependent upon a timer event. This double buffering
allows the user to update multiple compare values simultaneously. This is
useful for example with PWM signals where the period or duty cycle of multiple
signals needs to be updated simultaneously. See section 11.4.2.1 for more
discussion on how to use and configure the compare latches.

If the timer becomes equal to the value in compare latch TBCLx, then:

Timer Modes

11-20

� Interrupt flag CCIFGx, located in control word CCTLx, is set.

� An interrupt is requested if interrupt enable bits CCIEx and GIE are set.

� Signal EQUx is output to the output unit. This signal affects the output
OUTx, depending on the selected output mode.

The EQU0 signal is true when the timer value is greater or equal to the TBCL0
value. The EQU1 to EQUx signals are true when the timer value is equal to the
corresponding TBCL1 to TBCLx values.

11.4.2.1 Capture/Compare Block—Compare Mode—Compare Latch TBCLx

The compare logic uses the data in the compare latch for its comparison with
the timer value. The compare data is first written by software to the capture/
compare register CCRx and then automatically transferred to the compare
latch on a user-selectable load event. The load event is selected with the
CLLDx bits in each CCTLx register.

In addition, the compare latches may be grouped together so that each
compare latch in a group is updated simultaneously on the load event. All
compare latches may be grouped together in a single group, or they may be
grouped in groups of two or three compare latches. The grouping is configured
with the TBCLGRP bits in the TBCTL register. When using groups, the CLLDx
bits of the lowest numbered CCRx register in the group determine the load
event for each compare latch of the group except when all 7 compare latches
are grouped together (TBCLGRP=3). For example, if a user selects the
compare latches to be grouped in threes, then there are two groups of three:
TBCL1, TBCL2, and TBCL3 form one group, and TBCL4, TBCL5, and TBCL6
form the other group. In this scenario, the CLLDx bits for TBCL1 determine the
load event for the first group, and the CLLDx bits for TBCL4 determine the load
event for the second group. The CLLDx bits in CCTL2, CCTL3, CCTL5, and
CCTL6 are unused. When all compare latches are grouped together
(TBCLGRP=3), then the CLLDx bits in TBCL1 determine the load event.

When using groups, two conditions must exist for the compare latches to be
loaded. First, all CCRx registers of the group must be updated (except when
using immediate mode); second, the load event must occur. This means that
if a user intends to retain any CCRx register data of a group when updating the
group, the old data must be written to the CCRx register again. Otherwise, the
compare latches will not be updated.

The CLLDx bits in the applicable CCTLx register select the load event. There
are four choices for the load event:

� Immediate

� When TBR counts to 0

� Continuous mode or up mode – when TBR counts to 0
Up/down mode – when TBR counts to TBCL0 or counts to 0

� When TBR counts to TBCLx

T
im

er M
odes

11-21
T

im
er_B

The groupings and load conditions are summarized below in Table 11–2.

Table 11–2. Compare Latch Operating Modes

TBCLGRP

CLLDx From
Lowest

TBCCTLx in
Counter

Mode

Load Conditions†(load TBCCRx data to compare latch TBCLx)

TBCLGRP TBCCTLx in
Group (see

Note 1)

Mode
MCx x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

0 0–3 Immediate Immediate Immediate Immediate Immediate Immediate Immediate

1 1–3 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0

0
1,2 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0 TBR counts to 0

0 2
3

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

TBR counts to 0
or to TBCL0

3 1–3
TBR counts to

TBCL0
TBR counts to

TBCL1
TBR counts to

TBCL2
TBR counts to

TBCL3
TBR counts to

TBCL4
TBR counts to

TBCL5
TBR counts to

TBCL6

0 0–3 Immediate
TBCL1, TBCL2 loaded immediately
when the corresponding TBCCRx

register is loaded

TBCL3, TBCL4 loaded immediately
when the corresponding TBCCRx

register is loaded

TBCL5, TBCL6 loaded immediately
when the corresponding TBCCRx

register is loaded

1 1–3 TBR counts to 0
TBCL1, TBCL2 updated

simultaneously when TBR counts
to 0

TBCL3, TBCL4 updated
simultaneously when TBR counts

to 0

TBCL5, TBCL6 updated
simultaneously when TBR counts

to 0

1

2

1,2 TBR counts to 0
TBCL1, TBCL2 updated

simultaneously when TBR
counts to 0

TBCL3, TBCL4 updated
simultaneously when

TBR counts to 0

TBCL5, TBCL6 updated
simultaneously when

TBR counts to 0
2

3
TBR counts to 0

or to TBCL0

TBCL1, TBCL2 updated
simultaneously when TBR counts to

0 or to TBCL0

TBCL3, TBCL4 updated
simultaneously when TBR counts to

0 or to TBCL0

TBCL5, TBCL6 updated
simultaneously when TBR counts to

0 or to TBCL0

3 1–3
TBR counts to

TBCL0
TBR counts to

TBCL1
TBR counts to

TBCL2
TBR counts to

TBCL3
TBR counts to

TBCL4
TBR counts to

TBCL5
TBR counts to

TBCL6

† Timer_B3 has only three CCR blocks: TBCCR0, TBCCR1, and TBCCR2. The load conditions for TBCL3/4/5/6 are not relevant and can be ignored.

T
im

er M
odes

11-22
T

im
er_B

Table 12–2. Compare Latch Operating Modes (Continued)

TBCLGRP

CLLDx From
Lowest

TBCCTLx in
Counter

Mode

Load Conditions (load TBCCRx data to compare latch TBCLx)

TBCLGRP TBCCTLx in
Group (see

Note 1)

Mode
MCx x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

†

0 0–3 Immediate
TBCL1, TBCL2, TBCL3 loaded immediately when the

corresponding TBCCRx register is loaded
TBCL4, TBCL5, TBCL6 loaded immediately when the

corresponding TBCCRx register is loaded

†

1 1–3 TBR counts to 0
TBCL1, TBCL2, TBCL3 updated simultaneously when

TBR counts to 0
TBCL4, TBCL5, TBCL6 updated simultaneously when

TBR counts to 0

2†

2

1,2 TBR counts to 0
TBCL1, TBCL2, TBCL3 updated simultaneously when

TBR counts to 0
TBCL4, TBCL5, TBCL6 updated simultaneously when

TBR counts to 0
2

3
TBR counts to 0

or to TBCL0
TBCL1, TBCL2, TBCL3 updated simultaneously when

TBR counts to 0 or to TBCL0
TBCL4, TBCL5, TBCL6 updated simultaneously when

TBR counts to 0 or to TBCL0

3 1–3
TBR counts to

TBCL0
TBR counts to

TBCL1
TBR counts to

TBCL2
TBR counts to

TBCL3
TBR counts to

TBCL4
TBR counts to

TBCL5
TBR counts to

TBCL6

‡

0 0–3 TBCL0, TBCL1, TBCL2, TBCL3, TBCL4, TBCL5, TBCL6 Loaded immediately when the corresponding TBCCRx register is loaded.

‡

1 1–3 TBCL0,TBCL1, TBCL2, TBCL3, TBCL4, TBCL5, TBCL6 updated simultaneously when TBR counts to 0

3‡ 2
1,2 TBCL0,TBCL1, TBCL2, TBCL3, TBCL4, TBCL5, TBCL6 updated simultaneously when TBR counts to 0

3‡ 2
3 TBCL0,TBCL1, TBCL2, TBCL3, TBCL4, TBCL5, TBCL6 updated simultaneously when TBR counts to 0 or to TBCL0

3 1–3
TBR counts to

TBCL0
TBR counts to

TBCL1
TBR counts to

TBCL2
TBR counts to

TBCL3
TBR counts to

TBCL4
TBR counts to

TBCL5
TBR counts to

TBCL6
† Timer_B3 has only three CCR blocks: No triple group is possible with 3 CCR’s. If TBCLGRP=2 then it is treated as TBCLGRP=1.
‡ Timer_B3 has only three CCR blocks: TBCCR0, TBCCR1, and TBCCR2 are one group (TBCLGRP=3, CLLDx={0, 1, 2}).

Notes: 1) When using groups, load mode for the group is selected with the CLLDx bits of the lowest numbered TBCCTLx register in the group (except when TBCLGRP=3). For example,
when grouped by 2, the CLLDx bits of TBCCTL3 determine the load mode for TBCL3 and TBCL4. When grouped by 3, the CLLDx bits of TBCCTL4 determine the load mode
for TBCL4, TBCL5, and TBCL6, etc. When TBCLGRP=3 the CLLDx bits from TBCTL1 are used.

2) When using groups, all TBCCRx registers must be updated with new data before the load will take place (except when using immediate mode), even if new data = old data.
When using immediate mode, each compare latch is updated immediately when its corresponding TBCCRx register is updated.

3) When using groups, different load modes may be selected for each group. For example, when grouped by 3, immediate mode may be selected (via CLLDx bits in TBCCTL1)
for TBCL1, TBCL2, and TBCL3, and mode 2 may be selected (via CLLDx bits in TBCCTL4) for TBCL4, TBCL5, and TBCL6.

The Output Unit

11-23Timer_B

11.5 The Output Unit

Each capture/compare block contains an output unit shown in Figure 11–22.
The output unit is used to generate output signals such as PWM signals. Each
output unit has 8 operating modes that can generate a variety of signals based
on the EQU0 and EQUx signals. The output mode is selected with the OMx
bits located in the CCTLx register.

Figure 11–22.Output Unit

D Q

Reset

POR

OUTx

Set

Timer Clock

OUTx

OUTx Signal

EQU0
EQUx

OMx2
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

Output mode: OUTx signal reflects the value of the OUTx bit
Set mode: OUT x signal reflects the value of signal EQUx
PWM toggle/reset: EQUx toggles OUTx. EQU0 resets OUTx.
PWM set/reset: EQUx sets OUTx. EQU0 resets OUTx
Toggle: EQUx toggles OUTx signal.
Reset: EQUx resets OUTx.
PWM toggle/set: EQUx toggles OUTx. EQU0 sets OUTx.
PWM reset/set: EQUx resets OUTx. EQU0 sets OUTx.

OMx1 OMx0
0
1
0
1
0
1
0
1

Output
Control
Block

Note: OUTx signal updates with rising edge of timer clock for all modes except
mode 0.
Modes 2, 3, 6, 7 not useful for output unit 0.

11-24

11.5.1 Output Unit – Output Modes

The output modes are defined by the OMx bits and are discussed below. The
OUTx signal is changed with the rising edge of the timer clock for all modes
except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0.

Output mode 0: Output mode:
The output signal OUTx is defined by the OUTx bit in control
register CCTLx. The OUTx signal updates immediately
upon completion of writing the bit information.

Output mode 1: Set mode:
The output is set when the timer value becomes equal to
compare data TBCLx. It remains set until a reset of the timer,
or until another output mode is selected and controls the
output.

Output mode 2: PWM toggle/reset mode:
The output is toggled when the timer value becomes equal
to compare data TBCLx. It is reset when the timer value
becomes equal to TBCL0.

Output mode 3: PWM set/reset mode:
The output is set when the timer value becomes equal to
compare data TBCLx. It is reset when the timer value
becomes equal to TBCL0.

Output mode 4: Toggle mode:
The output is toggled when the timer value becomes equal
to compare data TBCLx. The output period is double the
timer period.

Output mode 5: Reset mode:
The output is reset when the timer value becomes equal to
compare data TBCLx. It remains reset until another output
mode is selected and controls the output.

Output mode 6: PWM toggle/set mode:
The output is toggled when the timer value becomes equal
to compare data TBCLx. It is set when the timer value
becomes equal to TBCL0.

Output mode 7: PWM toggle/set mode:
The output is reset when the timer value becomes equal to
compare data TBCLx. It is set when the timer value
becomes equal to TBCL0.

11-25Timer_B

11.5.2 Output Control Block

The output control block prepares the value of the OUTx signal, which is
latched into the OUTx flip-flop with the next positive timer clock edge, as shown
in Figure 11–23 and Table 11–3. The equal signals EQUx and EQU0 are
sampled during the negative level of the timer clock, as shown in Figure 11–23.

Figure 11–23.Output Control Block

The timer is Incremented with the rising edge of the timer clock.

Timer
Clock

Timer
TBR

EQUx

EQU0

EQU0, Delayed
Used in Up Mode Only

TBR = n

TBCLx = n

n–2 n–1 n n+1 TBR(max)
or TBCL0

0 1

TBR = 0
or

TBR = TBCL0

EQU0 delayed is used in up mode, not EQU0. EQU0 is active high when
TBR = TBCL0. EQU0 delayed is active high when TBR = 0.

D Q

Reset

POR

OUTx

Set

Timer Clock

OUTx

OUTx Signal

EQU0
EQUx

OMx2 OMx1 OMx0

Output
Control
Block

11-26

Table 11–3. State of OUTx at Next Rising Edge of Timer Clock

Mode EQU0 EQUx D

0 x x x(OUTx bit)

1 x
x

0
1

OUTx (no change)
1 (set)

2 0
0
1
1

0
1
0
1

OUTx (no change)
OUTx (toggle)
0 (reset)
1 (set)

3 0
0
1
1

0
1
0
1

OUTx (no change)
1 (set)
0 (reset)
1 (set)

4 x
x

0
1

OUTx (no change)
OUTx (toggle)

5 x
x

0
1

OUTx (no change)
0 (reset)

6 0
0
1
1

0
1
0
1

OUTx (no change)
OUTx (toggle)
1 (set)
0 (reset)

7 0
0
1
1

0
1
0
1

OUTx (no change)
0 (reset)
1 (set)
0 (reset)

11.5.3 Output Examples

The following are some examples of possible output signals using the various
timer and output modes.

11.5.3.1 Output Examples—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCL0 to zero, depending on the output mode, as shown in
Figure 11–24.

11-27Timer_B

Figure 11–24.Output Examples—Timer in Up Mode

Example, EQU1 UsedTBR(max)

TBCL0

TBCL1

0h

EQU0 EQU1 EQU0 EQU1 EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

Interrupt Events

11.5.3.2 Output Examples—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0
values, depending on the output mode, as shown in Figure 11–25.

Figure 11–25.Output Examples—Timer in Continuous Mode

TBR(max)

TBCL0

TBCL1

0h

TBOV EQU1 EQU0 EQU1 EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

TBOV Interrupt Events

11-28

11.5.3.3 Output Examples – Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCL0, depending on the output mode,
as shown in Figure 11–26.

Figure 11–26.Output Examples – Timer in Up/Down Mode (I)

TBR(max)
TBCL0

TBCL3

0h

TIMOV
EQU3

EQU0

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

EQU3
TIMOV

EQU3
EQU0

EQU3 Interrupt Events

Timer_B Registers

11-29Timer_B

11.6 Timer_B Registers

The Timer_B registers, described in Table 11–4, are word structured and must
be accessed using word instructions.

Table 11–4. Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 180h POR reset

Timer_B register TBR Read/write 190h POR reset

Cap/com control 0 CCTL0 Read/write 182h POR reset

Capture/compare 0 CCR0 Read/write 192h POR reset

Cap/com control 1 CCTL1 Read/write 184h POR reset

Capture/compare 1 CCR1 Read/write 194h POR reset

Cap/com control 2 CCTL2 Read/write 186h POR reset

Capture/compare 2 CCR2 Read/write 196h POR reset

Cap/com control 3 CCTL3 Read/write 188h POR reset

Capture/compare 3 CCR3 Read/write 198h POR reset

Cap/com control 4 CCTL4 Read/write 18Ah POR reset

Capture/compare 4 CCR4 Read/write 19Ah POR reset

Capture/compare 5 CCTL5 Read/write 18Ch POR reset

Capture/compare 5 CCR5 Read/write 19Ch POR reset

Capture/compare 6 CCTL6 Read/write 18Eh POR reset

Capture/compare 6 CCR6 Read/write 19Eh POR reset

Interrupt vector TBIV Read 11Eh (POR reset)

11.6.1 Timer_B Control Register TBCTL

The timer and timer operation control bits are located in the timer control
register (TBCTL) shown in Figure 11–27. All control bits are reset
automatically by the POR signal, but are not affected by the PUC signal. The
control register must be accessed using word instructions.

Figure 11–27.Timer_B Control Register TBCTL

rw-
(0)

15 0

Input Select Input Divider
Mode
Control

Un-
used CLR TBIE TBIFG

TBCTL
180h

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw
(0)

rw-
(0)

rw-
(0)

rw-
(0)

w-
(0)

Group TBCL Counter
Length

Un-
used

Bit 0: TBIFG: This flag indicates a timer overflow event.
Up mode: TBIFG is set if the timer counts from TBCL0

value to 0000h.
Continuous mode: TBIFG is set if the timer counts from

TBR(max) to 0000h.
Up/down mode: TBIFG is set if the timer counts down from

0001h to 0000h.

Bit 1: Timer overflow interrupt enable (TBIE) bit. An interrupt request
from the timer overflow bit is enabled if this bit is set, and is disabled
if reset.

Timer_B Registers

11-30

Bit 2: Timer clear (CLR) bit. The timer and input divider are reset with the
POR signal, or if bit CLR is set. The CLR bit is automatically reset
and is always read as zero. The timer starts in the upward direction
with the next valid clock edge, unless halted by cleared mode
control bits.

Bit 3: Not used

Bits 4, 5: Mode control: Table 11–5 describes the mode control bits.

Table 11–5. Mode Control

MC1 MC0 Count Mode Description

0 0 Stop Timer is halted.

0 1 Up to CCR0 Timer counts up to TBCL0 and restarts at 0.
Note: If TBCL0 > TBR(max), the counter counts to
zero with the next rising edge of timer clock.

1 0 Continuous up Timer counts up to TBR(max) and restarts at 0.
The maximum value of TBR [TBR(max)] is:

0FFFFh for 16-bit configuration
00FFFh for 12-bit configuration
003FFh for 10-bit configuration
000FFh for 8-bit configuration

1 1 Up/down Timer continuously counts up to CCR0 and back
down to 0.
Note: If CCR0 > TBR(max), the counter operates
as if it were configured for continuous mode. It
will not count down from TBR(max) to zero.

Bits 6, 7: Input divider control bits. Table 11–6 describes the clock-divider
bits.

Table 11–6. Input Clock Divider Control Bits

ID1 ID0 Operation Description

0 0 /1 Input clock source is passed to the timer.

0 1 /2 Input clock source is divided by two.

1 0 /4 Input clock source is divided by four.

1 1 /8 Input clock source is divided by eight.

Bits 8, 9: Clock source selection bits. Table 11–7 describes the clock source
selections.

Table 11–7. Clock Source Selection

SSEL1 SSEL0 O/P Signal Comment

0 0 TBCLK See data sheet device description

0 1 ACLK Auxiliary clock ACLK is used

1 0 SMCLK System clock SMCLK

1 1 INCLK See device description in data sheet

Timer_B Registers

11-31Timer_B

Bit 10: Unused

Bits 11, 12: Configure 16-bit timer (TBR) for 8-bit, 10-bit, 12-bit, or 16-bit
operation

CNTL = 0: 16-bit length, TBR(max) is 0FFFFH
CNTL = 1: 12-bit length, TBR(max) is 0FFFH
CNTL = 2: 10-bit length, TBR(max) is 03FFH
CNTL = 3: 8-bit length, TBR(max) is 0FFH

Bits 13, 14: Load compare latches, individually or in groups. The load signal
is controlled via the CLLDx bits located in the appropriate
capture/compare control register CCTLx.

TBCLGRP = 0: load individually
Load of the shadow registers is defined in each
individual CCTLx register by bits CLLDx. The
CLLD bits in each CCTLx register define the
operating mode for the shadow registers.

TBCLGRP = 1: Three groups are selected (TBCL1 + TBCL2,
 TBCL3 + TBCL4, TBCL5 + TBCL6):
 TBCL1 + TBCL2: The CLLD bits in CCTL1
 define the operating mode.
 TBCL3 + TBCL4: The CLLD bits in CCTL3
 define the operating mode.
 TBCL5 + TBCL6: The CLLD bits in CCTL5
 define the operating mode.

TBCLGRP = 2: Two groups are selected (TBCL1 + TBCL2 +
 TBCL3, TBCL4 + TBCL5 + TBCL6):
 TBCL1 + TBCL2 + TBCL3: The CLLD bits in
 CCTL1 define the operating mode.
 TBCL4 + TBCL5 + TBCL6: The CLLD bits in
 CCTL4 define the operating mode.

TBCLGRP = 3: One group is selected (all TBCLx registers):
The CLLD bits in CCTL1 define the operating
 mode for all shadow registers.

Bit 15: Unused

Timer_B Registers

11-32

Note: Changing Timer_B Control Bits

If the timer operation is modified by the control bits in the TBCTL register, the
timer should be halted during this modification. Critical modifications are the
input select bits, input divider bits, and the timer clear bit. Asynchronous
clocks, input clock, and system clock can result in race conditions where the
timer reacts unpredictably.

The recommended instruction flow is:

1) Modify the control register and stop the timer with one instruction.

2) Start the timer operation.

For example:

MOV #0286h,&TBCTL ; ACLK/8, timer stopped, timer cleared

BIS #10h,&TBCTL ; Start timer with up mode

11.6.2 Timer_B Register TBR

The TBR register is the value of the timer.

Figure 11–28.TBR Register

rw-(0)

15 0
TBR
190h Timer Value

rw-(0) rw-(0) rw-(0)rw-(0) rw-(0) rw-(0)rw-(0)rw-(0)rw-(0)rw-(0)rw-(0) rw-(0)rw-(0) rw-(0)rw-(0)

Note: Modifying Timer_B Register TBR

When ACLK, SMCLK, or the external clock TBCLK or INCLK is selected for
the timer clock, any write to timer register TBR should occur while the timer
is not operating; otherwise, the results may be unpredictable. In this case,
the timer clock is asynchronous to the CPU clock MCLK and critical race
conditions exist.

11.6.3 Capture/Compare Control Register CCTLx

Each capture/compare block has its own control word CCTLx, shown in
Figure 11–29. The POR signal resets all bits of CCTLx; the PUC signal does
not affect these bits.

Figure 11–29.Capture/Compare Control Register CCTLx

rw-(0)

15 0
Input

Select
CCIE OUT COV CCIFG

CCTLx
182h to 19Ah

Capture
Mode

SCS CLLD CAP OUTMODx CCI

rrw-(0) rw-(0) rw-(0)rw-(0) rw-(0) rw-(0)rw-(0)rw-(0)rw-(0)rw-(0)rw-(0) rw-(0)rw-(0) rw-(0)

Timer_B Registers

11-33Timer_B

Bit 0: Capture/compare interrupt flag CCIFGx
Capture mode:

If set, it indicates that a timer value was captured in the
CCRx register.

Compare mode:
If set, it indicates that a timer value was equal to the data
in the TBCLx latch.

CCIFG0 flag:
CCIFG0 is automatically reset when the interrupt request
is accepted.

CCIFG1 to CCIFGx flags:
The flag that caused the interrupt is automatically reset
after the TBIV word is accessed. If the TBIV register is not
accessed, the flags must be reset with software.

No interrupt is generated if the corresponding interrupt
enable bit is reset, but the flag will be set. In this scenario,
the flag must be reset by the software.

Setting the CCIFGx flag with software will request an
interrupt if the interrupt-enable bit is set.

Bit 1: Capture overflow flag COV
Compare mode selected, CAP = 0:

Capture signal generation is reset. No compare event will
set COV bit.

Capture mode selected, CAP = 1:
The overflow flag COV is set if a second capture is
performed before the first capture value is read. The
overflow flag must be reset with software. It is not reset by
reading the capture value.

Bit 2: The OUTx bit determines the value of the OUTx signal if the
output mode is 0.

Bit 3: Capture/compare input signal CCIx:
The selected input signal (CCIxA, CCIxB, VCC. or GND) can be
read by this bit. See Figure 11–18.

Bit 4: Interrupt enable CCIEx: Enables or disables the interrupt
request signal of capture/compare block x. Note that the GIE bit
must also be set to enable the interrupt.
0: Interrupt disabled
1: Interrupt enabled

Bits 5 to 7: Output mode select bits:
Table 11–7 describes the output mode selections.

Timer_B Registers

11-34

Table 11–8. Capture/Compare Control Register Output Mode

Bit
Value Output Mode Description

0 Output only The OUTx signal reflects the value of the OUTx bit

1 Set EQUx sets OUTx

2 PWM
toggle/reset

EQUx toggles OUTx. EQU0 resets OUTx.

3 PWM set/reset EQUx sets OUTx. EQU0 resets OUTx

4 Toggle EQUx toggles OUTx signal.

5 Reset EQUx resets OUTx.

6 PWM
toggle/set

EQUx toggles OUTx. EQU0 sets OUTx.

7 PWM reset/set EQUx resets OUTx. EQU0 sets OUTx.

Note: OUTx updates with rising edge of timer clock for all modes except mode 0.
Modes 2, 3, 6, 7 not useful for output unit 0.

Bit 8: CAP sets capture or compare mode.
0: Compare mode
1: Capture mode

Bits 9, 10: CLLD: Select load source for compare latch TBCLx
(also see description of bits TBCLGRP, 13 and 14, in TBCTL)
CLLD = 0: Immediate
CLLD = 1: Load CCRx data to TBCLx when TBR counts to 0
CLLD = 2: UP/DOWN mode: load CCRx data to TBCLx when
 TBR counts to TBCL0 or to 0
 Continuous mode or UP-mode: load CCRx data
 to TBCLx when TBR counts to 0
CLLD = 3: CCRx data are loaded to TBCLx when TBR counts
to TBCLx

Bit 11: SCSx bit:
This bit is used to synchronize the capture input signal with the
timer clock.
0: asynchronous capture
1: synchronous capture

Bits 12, 13: Input select, CCIS0 and CCIS1:
These two bits define the capture signal source. These bits are
not used in compare mode.
0 Input CCIxA is selected
1 Input CCIxB is selected
2 GND
3 VCC

Bits 14, 15: Capture mode bits:
Table 11–8 describes the capture mode selections.

Timer_B Registers

11-35Timer_B

Table 11–9. Capture/Compare Control Register Capture Mode

Bit
Value Capture Mode Description

0 Disabled The capture mode is disabled.

1 Pos. Edge Capture is done with rising edge.

2 Neg. Edge Capture is done with falling edge.

3 Both Edges Capture is done with both rising and falling edges.

Note: Simultaneous Capture and Capture Mode Selection

Captures must not be performed simultaneously with switching from
compare to capture mode. Otherwise, the result in the capture/compare
register will be unpredictable.

The recommended instruction flow is:

1) Modify the control register to switch from compare to capture.

2) Capture

For example:

BIS #CAP,&CCTL2 ; Select capture with register CCR2

XOR #CCIS1,&CCTL2 ; Software capture: CCIS0 = 0

; Capture mode = 3

11.6.4 Timer_B Interrupt Vector Register

Two interrupt vectors are associated with the 16-bit Timer_B module:

� CCR0 interrupt vector (highest priority)

� TBIV interrupt vector for flags CCIFG1–CCIFGx and TBIFG.

11.6.4.1 CCR0 Interrupt Vector

The interrupt flag associated with capture/compare register CCR0, as shown
in Figure 11–30, is set if the timer value is equal to the compare register value.

Figure 11–30.Capture/Compare Interrupt Flag

D Q

Reset

Set

CCIE0

Timer Clock
CAP

EQ0
TBCL0 = Timer

Capture

IRQ, Interrupt_Service_Requested

IRACC, Interrupt_Request_Accepted

Capture/compare register 0 has the highest Timer_B interrupt priority, and
uses its own interrupt vector.

Timer_B Registers

11-36

11.6.4.2 Vector Word, TBIFG, CCIFG1 to CCIFGx Flags

The CCIFGx (other than CCIFG0) and TBIFG interrupt flags are prioritized and
combined to source a single interrupt as shown in Figure 11–31. The interrupt
vector register TBIV (shown in Figure 11–32) is used to determine which flag
requested an interrupt.

Figure 11–31.Schematic of Capture/Compare Interrupt Vector Word

S

S
Sel

R

CCI1
EQ1

CMP1
Timer Clock

IRACC

CCIE1

CCIFG1

S

S
Sel

R

CCI2
EQ2

CMP2
Timer Clock

IRACC

CCIE2

CCIFG2

S

S
Sel

R

CCI6
EQ6

CMP6
Timer Clock

IRACC

CCIE6

CCIFG6

S

S
Sel

R

TBR(MAX)
Timer = TBCL0

XXX
Timer Clock

IRACC

TBIE

TBIFG

Priority and
Vector Word
Generator

Interrupt_Service_Request

Interrupt_Vector_Address

Module 3

Module 4

Module 5

Figure 11–32.Vector Word Register

r0

15 0
TBIV
11Eh 0

r0 r0 r0 r0 r0 r0 r0 r0 r0 r0 r0 r0

0 0 0 0 0 0 0 0 0 0 Interrupt Vector 0

r-(0) r-(0) r-(0)

0

The flag with the highest priority generates a number from 2 to 14 in the TBIV
register as shown in Table 11–9. (If the value of the TBIV register is 0, no
interrupt is pending.) This number can be added to the program counter to
automatically enter the appropriate software routine without the need for
reading and evaluating the interrupt vector. The software example in section
11.6.4.3 shows this technique.

Timer_B Registers

11-37Timer_B

Table 11–10. Vector Register TBIV Description

Interrupt
Priority Interrupt Source Short Form

Vector Register
TBIV Contents

Highest† Capture/compare 1 CCIFG1 2

Capture/compare 2 CCIFG2 4

Capture/compare 3‡ CCIFG3 6

Capture/compare 4‡ CCIFG4 8

Capture/compare 5‡ CCIFG5 10

Capture/compare 6‡ CCIFG6 12

Lowest Timer overflow TBIFG 14

No interrupt pending 0
† Highest pending interrupt other than CCIFG0. CCIFG0 is always the highest priority Timer_B

interrupt.
‡ 14x devices only

Accessing the TBIV register automatically resets the highest pending interrupt
flag. If another interrupt flag is set, then another interrupt will be immediately
generated after servicing the initial interrupt. For example, if both CCIFG2 and
CCIFG3 are set, when the interrupt service routine accesses the TBIV register
(either by reading it or by adding it directly to the PC), CCIFG2 will be reset
automatically. After the RETI instruction of the interrupt service routine is
executed, the CCIFG3 flag will generate another interrupt.

Note: Writing to Read-Only Register TBIV

Register TBIV should not be written to. If a write operation to TBIV is
performed, the interrupt flag of the highest-pending interrupt is reset.
Therefore, the requesting interrupt event is missed. Additionally, writing to
this read-only register results in increased current consumption as long as
the write operation is active.

Timer_B Registers

11-38

11.6.4.3 Timer Interrupt Vector Register, Software Example, Timer_B7

The following software example describes the use of vector word TBIV of
Timer_B3 and the handling overhead. The numbers at the right margin show
the necessary cycles for every instruction. The example is written for
continuous mode: the time difference to the next interrupt is added to the
corresponding compare register.
; Software example for the interrupt part Cycles
;

; Interrupt handler for Capture/Compare Module 0.
; The interrupt flag CCIFG0 is reset automatically
;

TIMMOD0 ... ; Start of handler Interrupt latency 6
RETI 5

;

; Interrupt handler for Capture/Compare Modules 1 to 6.
; The interrupt flags CCIFGx and TBIFG are reset by
; hardware. Only the flag with the highest priority
; responsible for the interrupt vector word is reset.
TIM_HND $; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP TIMMOD1 ; Vector 2: Module 1 2
JMP TIMMOD2 ; Vector 4: Module 2 2
JMP TIMMOD3 ; Vector 6: Module 3 2
JMP TIMMOD4 ; Vector 8: Module 4 2
JMP TIMMOD5 ; Vector 10: Module 5 2
JMP TIMMOD6 ; Vector 12: Module 6 2

;

; Module 7. Timer Overflow Handler: the Timer Register is
; expanded into the RAM location TIMEXT (MSBs)
;

TIMOVH ; Vector 14: TIMOV Flag
INC TIMEXT ; Handle Timer Overflow 4
RETI 5

;

TIMMOD2 ; Vector 4: Module 2
ADD #NN,&CCR2 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

;

TIMMOD1 ; Vector 2: Module 1
ADD #MM,&CCR1 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

; The Module 3 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
;

TIMMOD3 ; Vector 6: Module 3
ADD #PP,&CCR3 ; Add time difference 5
... ; Task starts here
JMP TIM_HND ; Look for pending interrupts 2

;

.SECT ”VECTORS”,0FFF0h ; Interrupt Vectors
; The vector address may be different for different devices.
;

.WORD TIM_HND ; Vector for Capture/Compare
; Module 1..6 and timer overflow
; TBIFG

.WORD TIMMOD0 ; Vector for Capture/Compare
; Module 0

Timer_B Registers

11-39Timer_B

11.6.4.4 Timer Interrupt Vector Register, Software Example, Timer_B3

The following software example describes the use of vector word TBIV of
Timer_B3 and the handling overhead. The numbers at the right margin show
the necessary cycles for every instruction. The example is written for
continuous mode: the time difference to the next interrupt is added to the
corresponding compare register.
; Software example for the interrupt part Cycles
;

; Interrupt handler for Capture/Compare Module 0.
; The interrupt flag CCIFG0 is reset automatically
;

TIMMOD0 ... ; Start of handler Interrupt latency 6
RETI 5

;

; Interrupt handler for Capture/Compare Modules 1 to 6.
; The interrupt flags CCIFGx and TBIFG are reset by
; hardware. Only the flag with the highest priority
; responsible for the interrupt vector word is reset.
TIM_HND $; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP TIMMOD1 ; Vector 2: Module 1 2
JMP TIMMOD2 ; Vector 4: Module 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ; Vector 12

;

; Timer Overflow Handler: the Timer Register is expanded
; into the RAM location TIMEXT (MSBs)
;

TIMOVH ; Vector 14: TIMOV Flag
INC TIMEXT ; Handle Timer Overflow 4
RETI 5

;

TIMMOD2 ; Vector 4: Module 2
ADD #NN,&CCR2 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
;

TIMMOD1 ; Vector 6: Module 3
ADD #PP,&CCR1 ; Add time difference 5
... ; Task starts here
JMP TIM_HND ; Look for pending interrupts 2

;

.SECT ”VECTORS”,0FFF0h ; Interrupt Vectors
; The vector address may be different for different devices.
;

.WORD TIM_HND ; Vector for Capture/Compare
; Module 1..6 and timer overflow
; TBIFG

.WORD TIMMOD0 ; Vector for Capture/Compare
; Module 0

If the FLL (on applicable devices) is turned off, then two additional cycles need
to be added for a synchronous start of the CPU and system clock MCLK.

If the CPU clock MCLK was turned off in devices with the Basic Clock Module
(CPUOFF=1), then 2 or 3 additional cycles need to be added for synchronous
start of the CPU. The delta of one clock cycle is caused when clocks are
asynchronous to the restart of CPU clock MCLK.

Timer_B Registers

11-40

The software overhead for different interrupt sources includes interrupt
latency and return-from-interrupt cycles (but not the task handling itself), as
described:

� Capture/compare block CCR0 11 cycles
� Capture/compare blocks CCR1 to CCR6 16 cycles
� Timer overflow TBIFG 14 cycles

11.6.4.5 Timing Limits

With the TBIV register and the previous software, the shortest repetitive time
distance tCRmin between two events using a compare register is:

tCRmin = ttaskmax + 16 × tcycle

With: ttaskmax Maximum (worst case) time to perform the task during the
interrupt routine (for example, incrementing a counter)

tcycle Cycle time of the system frequency MCLK

The shortest repetitive time distance tCLmin between two events using a
capture register is:

tCLmin = ttaskmax + 16 x tcycle

12-1USART Peripheral Interface, UART Mode

USART Peripheral Interface, UART Mode

The universal synchronous/asynchronous receive/transmit (USART) serial-
communication peripheral supports two serial modes with one hardware
configuration. These modes shift a serial bit stream in and out of the MSP430
at a programmed rate or at a rate defined by an external clock. The first mode
is the universal asynchronous receive/transmit (UART) communication
protocol; the second is the serial peripheral interface (SPI) protocol (discussed
in Chapter 13).

Bit SYNC in control register UCTL (U0CTL for USART0 or U1CTL for
USART1) selects the required mode:

SYNC = 0: UART – asynchronous mode selected
SYNC = 1: SPI – synchronous mode selected

The ’12x and ’13x have one USART, named USART0. The ’14x has two
USARTs implemented: USART0 and USART1.

This chapter addresses the UART mode.

Topic Page

12.1 USART Peripheral Interface 12-2.

12.2 USART Peripheral Interface, UART Mode 12-3.

12.3 Asynchronous Operation 12-4.

12.4 Interrupt and Enable Functions 12-11.

12.5 Control and Status Registers 12-15.

12.6 Utilizing Features of Low-Power Modes 12-23.

12.7 Baud Rate Considerations 12-26.

Chapter 12

USART Peripheral Interface

12-2

12.1 USART Peripheral Interface

The USART peripheral interface connects to the CPU as a byte peripheral
module. It connects the MSP430 to the external system environment with
three or four external pins. Figure 12–1 shows the USART peripheral interface
module.

Figure 12–1. Block Diagram of USART

0

Receive Buffer
U0RXBUF or U1RXBUF

SSEL0SSEL1

UCLKI
ACLK

1
2

3

WUT

CKPH

Receive Shift Register

Receive Status

0

SYNC

SYNC

Baud Rate Generator

Baud Rate Register
U0BR or U1BR

Baud Rate Generator

SYNCSYNC

SYNC
UCLKS

Transmit Shift Register

Transmit Buffer
U0TXBUF or U1TXBUF

0

1

1

0

1

0

Clock Phase and Polarity

SYNC CKPL

UCLKI

UCLKS

UCLK

SIMO

UTXD

STE

URXD

SOMI

MMListen
SYNC RXE

TXWake

SMCLK

SMCLK

USART Peripheral Interface, UART Mode

12-3USART Peripheral Interface, UART Mode

12.2 USART Peripheral Interface, UART Mode

The USART peripheral interface is a serial channel that shifts a serial bit
stream of 7 or 8 bits in and out of the MSP430. The UART mode is chosen
when control bit SYNC in the USART control register (U0CTL for USART0 or
U1CTL for USART1) is reset.

12.2.1 UART Serial Asynchronous Communication Features

Some of the UART features include:

� Asynchronous formats that include idle line/address bit-communication
protocols

� Two shift registers that shift a serial data stream into URXD and out of
UTXD

� Data that is transmitted/received with the LSB first

� Programmable transmit and receive bit rates

� Status flags

Figure 12–2 shows the USART in UART mode.

Figure 12–2. Block Diagram of USART—UART Mode

0

Receive Buffer
U0RXBUF or U1RXBUF

SSEL0SSEL1

UCLKI
ACLK

1
2

3

WUT

Receive Shift Register

Receive Status

LSB First

Baud Rate Generator

Baud Rate Register
U0BR or U1BR

Baud Rate Generator

UCLKS

Transmit Shift Register

Transmit Buffer
U0TXBUF or U1TXBUF

0

1

Clock Polarity

CKPL

UCLKI

UCLKS
UCLK

URXD

SYNC = 0
Listen

RXE

TXWake

UTXD

SMCLK
SMCLK

Asynchronous Operation

12-4

12.3 Asynchronous Operation

In the asynchronous mode, the receiver synchronizes itself to frames but the
external transmitting and receiving devices do not use the same clock source;
the baud rate is generated locally.

12.3.1 Asynchronous Frame Format

The asynchronous frame format, shown in Figure 12–3, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit in address
bit mode, and one or two stop bits. The bit period is defined by the selected
clock source and the data in the baud rate registers.

Figure 12–3. Asynchronous Frame Format

[Parity Bit, PENA = 1]

[Address Bit, MM = 1]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, SP = 1]

[8th Data Bit, CHAR = 1]

ST

The receive (RX) operation is initiated by the receipt of a valid start bit. It begins
with a negative edge at URXD, followed by the taking of a majority vote from
three samples where two of the samples must be zero. These samples occur
at n/2–X, n/2, and n/2+X of the BRCLK periods following the negative edge.
This sequence provides false start-bit rejection, and also locates the center of
the bits in the frame, where the bits can be read on a majority basis. The timing
of X is 1/32 to 1/63 times that of the BRCLK, depending on the division rate
of the baud rate generator and provides complete coverage of at least two
BRCLK periods. Figure 12–4 shows an asynchronous bit format.

Figure 12–4. Asynchronous Bit Format Example for n or n + 1 Clock Periods

1 2 3 n/2–x n/2 n/2+x n–1 n n+1 1 2
n–1 n 1 2 3

Falling Edge
on UEXD

Indicates Start bit

Majority Vote
Taken From

URXD Data Line

Data Bit Period = n or n+1 BRCLK Periods

Data Bit Period = n or n+1 BRCLK Periods

H
L

H
L

H
L

BRCLK

UTXD

URXD

Asynchronous Operation

12-5USART Peripheral Interface, UART Mode

12.3.2 Baud Rate Generation in Asynchronous Communication Format

Baud rate generation in the MSP430 differs from other standard serial-
communication interface implementations.

12.3.2.1 Typical Baud Rate Generation

Typical baud-rate generation uses a prescaler from any clock source and a
fixed, second-clock divider that is usually divide-by-16. Figure 12–5 shows a
typical baud-rate generation.

Figure 12–5. Typical Baud-Rate Generation Other Than MSP430

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

16-Bit Prescaler/Divider
RC

:16BRCLK

Start
8 8 15

BRSCLK
BITCLK

UxBR0 UxBR1
0 7 0 7

Select Clock Source

Clock1

Clockn

H
L

H
L

H
L

Start

BRSCLK

BITCLK

Take Majority Vote of Receive Bit

Baud rate = BRCLK
n � 16

Typical baud-rate schemes often require specific crystal frequencies or cannot
generate some baud rates required by some applications. For example,
division factors of 18 are not possible, nor are noninteger factors such as
13.67.

12.3.2.2 MSP430 Baud Rate Generation

The MSP430 baud rate generator uses one prescaler/divider and a modulator
as shown in Figure 12–6. This combination works with crystals whose
frequencies are not multiples of the standard baud rates, allowing the protocol
to run at maximum baud rate with a watch crystal (32,768 Hz). This technique
results in power advantages because sophisticated, MSP430 low-power
operations are possible.

Asynchronous Operation

12-6

Figure 12–6. MSP430 Baud Rate Generation Example for n or n + 1 Clock Periods

0

SSEL0SSEL1

UCLKI
ACLK

1
2

3

15-Bit Prescaler/Divider

Toggle
FF

Start
7 8 15

BITCLK

UxBR0 UxBR1
0 7 0 7

1

Q1 Q15

Compare 0 or 1

Shift Modulation Register Data

Shift_inShift_out
m

Modulation Register
U0MCTL or U1MCTL

70

BRCLK

INT(n/2), m = 0
INT(n/2)+m(=1)

n(Even), m = 0
n(Odd) or n(Even)+m(=1)

n(Odd)+m(=1)

H
L
H
L

H
L

Start

BRCLK

Counter

BITCLK

Divide By

n/2-2n/2 n/2-1 1
1
1

0
n/2
n/2

n/2
n/2-1
n/2-1

n/2-1
n/2-2
n/2-2

2
1
1

1
0

n/2

0
n/2

n/2-1

n/2
n/2-1
n/2-2

MCLK

MCLK

The modulation register LSB is first used for modulation, which begins with the
start bit. A set modulation bit increases the division factor by one.

Example 12–1. 4800 Baud

Assuming a clock frequency of 32,768 Hz for the BRCLK signal and a required
baud rate of 4800, the division factor is 6.83. The baud rate generation in the
MSP430 USART uses a factor of six plus a modulation register load of 6Fh
(0110 1111). The divider runs the following sequence: 7 – 7 – 7 – 7 – 6 –
7 – 7 – 6 and so on. The sequence repeats after all eight bits of the modulator
are used.

Example 12–2. 19,200 Baud

Assuming a clock frequency of 1.04 MHz (32 × 32,768 Hz) for the BRCLK
signal and a required baud rate of 19,200, the division factor is 54.61. The baud
rate generation in the MSP430 USART uses a factor of 54 (36h) plus a
modulation register load of 0D5h. The divider runs the following sequence: 55
– 54 – 55 – 54 – 55 – 54 – 55 – 55, and so on. The sequence repeats after all
eight bits of the modulator are used.

Asynchronous Operation

12-7USART Peripheral Interface, UART Mode

12.3.3 Asynchronous Communication Formats

The USART module supports two multiprocessor communication formats
when asynchronous mode is used. These formats can transfer information
between many microcomputers on the same serial link. Information is
transferred as a block of frames from a particular source to one or more
destinations. The USART has features that identify the start of blocks and
suppress interrupts and status information from the receiver until a block start
is identified. In both multiprocessor formats, the sequence of data exchanged
with the USART module is based on data polling, or on the use of the receive
interrupt features.

Both of the asynchronous multiprocessor formats—idle-line and address-bit
—allow efficient data transfer between multiple communication systems. They
can also minimize the activity of the system to save current consumption or
processing resources.

The control register bit MM defines the address bit or idle-line multiprocessor
format. Both use the wake-up-on-transfer mode by activating the TXWake bit
(address feature function) and RXWake bit. The URXWIE and URXIE bits
control the transmit and receive features of these asynchronous
communication formats.

12.3.4 Idle-Line Multiprocessor Format

In the idle-line multiprocessor format, shown in Figure 12–7, blocks of data are
separated by an idle time. An idle-receive line is detected when ten or more
1s in a row are received after the first stop bit of a character.

Figure 12–7. Idle-Line Multiprocessor Format

ST Address SP ST Data SP ST Data SP

Block of Frames

Idle Periods of 10 Bits or More

UTXD/URXD Expanded

UTXD/URXD

First Frame Within Block
Is Address. It Follows Idle
Period of 10 Bits or More

Frame Within Block

Idle Period Less Than 10 Bits

Frame Within Block

UTXD/URXD

Asynchronous Operation

12-8

When two stop bits are used for the idle line, as shown in Figure 12–8, the
second one is counted as the first mark bit of the idle period. The first character
received after an idle period is an address character. The RXWake bit can be
used as an address tag for the character. In the idle-line multiprocessor format,
the RXWake bit is set when a received character is an address character and
is transferred into the receive buffer.

Figure 12–8. USART Receiver Idle Detect

10-Bit Idle Period

Mark

Space
XXXX SP ST XXXXXXX

Example: One Stop Bit

10-Bit Idle Period

Mark

Space
XXXX SP ST XXXXXXX

Example: Two Stop Bits

SP

SP: Stop Bit
ST: Start Bit

Normally, if the USART URXWIE bit is set in the receive control register,
characters are assembled as usual by the receiver. They are not, however,
transferred to the receiver buffer, UxRXBUF, nor are interrupts generated.
When an address character is received, the receiver is temporarily activated
to transfer the character to UxRXBUF and to set the URXIFG interrupt flag.
Applicable error status flags are set. The application software can validate the
received address. If there is a match, the application software further
processes the data and executes the operation. If there is no match, the
processor waits for the next address character to arrive. The URXWIE bit is
not modified by the USART: it must be modified manually to receive
nonaddress or address characters.

In idle-line multiprocessor format, a precise idle period can be generated to
create efficient address character identifiers. The wake-up temporary (WUT)
flag is an internal flag and is double-buffered with TXWake. When the
transmitter is loaded from UxTXBUF, WUT is loaded from TXWake, and the
TXWake bit is reset as shown in Figure 12–9.

Figure 12–9. Double-Buffered WUT and TX Shift Register

TX Buffer UxTXBUF

TX Shift RegisterWUT

TXWake
Start Bit Parity Bit

TX Signal

Asynchronous Operation

12-9USART Peripheral Interface, UART Mode

The following procedure sends out an idle frame to identify an address
character:

1) Set the TXWake bit and then write any word (don’t care) to the UxTXBUF
(UTXIFG must be set).

When the transmitter shift register is empty, the contents of UxTXBUF are
shifted to the transmit shift register and the TXWake value is shifted to
WUT.

2) Set bit WUT, which suppresses the start, data, and parity bits and
transmits an idle period of exactly 11 bits, as shown in Figure 12–10.

The next data word, shifted out of the serial port after the address-
character identifying idle period, is the second word written to the
UxTXBUF after the TXWake bit has been set. The first data word written is
suppressed while the address identifier is sent out and ignored thereafter.
Writing the first don’t care word to UxTXBUF is necessary to shift the
TXWAKE bit to WUT and generate an idle-line condition.

Figure 12–10. USART Transmitter Idle Generation

11-Bit Idle Period

Mark

Space
XXXX SP ST XXXXXXX

Example: One Stop Bit

11-Bit Idle Period

Mark

Space
XXXX SP ST XXXXXXX

Example: Two Stop Bits

SP

SP: Stop Bit
ST: Start Bit

12.3.5 Address-Bit Multiprocessor Format

In the address-bit multiprocessor format shown in Figure 12–11, characters
contain an extra bit used as an address indicator. The first character in a block
of data carries an address bit which indicates that the character is an address.
The RXWake bit is set when a received character is an address character. It
is transferred into the receive buffer (receive conditions are true).

Usually, if the USART URXWIE bit is set, data characters are assembled by
the receiver but are not transferred to the receiver buffer UxRXBUF, nor are
interrupts generated. When a character that has an address bit set is received,
the receiver is temporarily activated to transfer the character to UxRXBUF and
to set the URXIFG. Error status flags are set as applicable. The application
software processes the succeeding operation to optimize resource handling
or reduce current consumption. The application software can validate the
received address. If there is a match, the processor can read the remainder
of the data block. If there is not a match, the processor waits for the next
address character to arrive.

Asynchronous Operation

12-10

Figure 12–11. Address-Bit Multiprocessor Format

ST Address SP ST Data SP ST Data SP

Block of Frames

Idle Periods of No Significance

TXD/RXD Expanded

UTXD/URXD

First Frame Within Block
Is an Address. The
ADDR/DATA Bit Is 1

ADDR/DATA Bit Is 0
for Data Within Block.

Idle Time Is of No Significance

UTXD/URXD
1 0 0

In the address-bit multiprocessor mode, the address bit of a character can be
controlled by writing to the TXWake bit. The value of the TXWake bit is loaded
into the address bit of that character each time a character is transferred from
transmit buffer UxTXBUF to the transmitter. The TXWake bit is then cleared
by the USART.

Interrupt and Enable Functions

12-11USART Peripheral Interface, UART Mode

12.4 Interrupt and Enable Functions

The USART peripheral interface serves two main interrupt sources for
transmission and reception. Two interrupt vectors serve receive and transmit
events.

The interrupt control bits and flags and enable bits of the USART peripheral
interface are located in the SFR registers. They are discussed in Table 12–1.
See the peripheral file map in Appendix A for the exact bit locations.

Table 12–1.USART Interrupt Control and Enable Bits—UART Mode

Receive interrupt flag URXIFG‡ Initial state reset (by PUC/SWRST)

Receive interrupt enable URXIE‡ Initial state reset (by PUC/SWRST)

Receive enable† URXE‡ Initial state reset (by PUC)

Transmit interrupt flag UTXIFG‡ Initial state set (by PUC/SWRST)

Transmit interrupt enable UTXIE‡ Initial state reset (by PUC/SWRST)

Transmit enable† UTXE‡ Initial state reset (by PUC)
† Different for SPI mode, see Chapter 13
‡ Suffix .0 for USART0 and .1 for USART1

The USART receiver and transmitter operate independently, but use the same
baud rate.

12.4.1 USART Receive Enable Bit

The receive enable bit URXE, shown in Figure 12–12, enables or disables
receipt of the bit stream on the URXD data line. Disabling the USART receiver
stops the receive operation after completion of receiving the character, or
stops immediately if no receive operation is active. Start-bit detection is also
disabled.

Figure 12–12. State Diagram of Receiver Enable

Idle State
(Receiver
Enabled)

Receive
Disable

Receiver
Collects

Character

URXE = 0
No Valid Start Bit

Not Completed

URXE = 1

URXE = 0

URXE = 1
Valid Start Bit Handle Interrupt

Conditions

Character
ReceivedURXE = 1

URXE = 0

Note: URXE Reenabled, UART Mode

Because the receiver is completely disabled, reenabling the receiver is
asynchronous to any data stream on the communication line.
Synchronization can be performed by looking for an idle line condition before
receiving a character.

Interrupt and Enable Functions

12-12

12.4.2 USART Transmit Enable Bit

The transmit enable bit UTXE, shown in Figure 12–13, enables or disables a
character transmission on the serial-data line. If this bit is reset, the transmitter
is disabled, but any active transmission does not halt until the data in the
transmit shift register and the transmit buffer are transmitted. Data written to
the transmit buffer before UTXE has been reset may be modified or
overwritten—even after UTXE is reset—until it is shifted to the transmit shift
register. For example, if software writes a byte to the transmit buffer and then
resets UTXE, the byte written to the transmit buffer will be transmitted and may
be modified or overwritten until it is transferred into the transmit shift register.
However, after the byte is transferred to the transmit shift register, any
subsequent writes to UxTXBUF while UTXE is reset will not result in
transmission, but UxTXBUF will be updated with the new value.

Figure 12–13. State Diagram of Transmitter Enable

Idle State
(Transmitter

Enabled)

Transmit
Disable

Transmission
Active

UTXE = 0 No Data Written
to Transmit Buffer Not Completed

UTXE = 1

UTXE = 0

UTXE = 1
Data Written to
Transmit Buffer Handle Interrupt

Conditions

Character
TransmittedUTXE = 1

UTXE = 0 And Last Buffer
Entry Is Transmitted

When UTXE is reset and the current transmission is completed, new data
written to the transmit buffer will not be transmitted. Once the UTXE bit is set,
the data in the transmit buffer are immediately loaded into the transmit shift
register and character transmission is started.

Note: Writing to UxTXBUF, UART Mode

Data should never be written to transmit buffer UxTXBUF when the buffer is
not ready and when the transmitter is enabled (UTXE is set). Otherwise, the
transmission will have errors.

Note: Write to UxTXBUF/Reset of Transmitter, UART Mode

Disabling the transmitter should be done only if all data to be transmitted has
been moved to the transmit shift register.
 MOV.B #....,&U0TXBUF

 BIC.B #UTXE.0,&ME2 ; If BITCLK < MCLK then the

; transmitter might be stopped

; before the buffer is loaded

; into the transmitter shift

; register

Interrupt and Enable Functions

12-13USART Peripheral Interface, UART Mode

12.4.3 USART Receive Interrupt Operation

In the receive interrupt operation, shown in Figure 12–14, the receive interrupt
flag URXIFG is set or is unchanged each time a character is received and
loaded into the receive buffer:

� Erroneous characters (parity, frame, or break error) do not set interrupt
flag URXIFG when URXEIE is reset: URXIFG is unchanged.

� All types of characters (URXWIE = 0), or only address characters
(URXWIE = 1), set the interrupt flag URXIFG. When URXEIE is set,
erroneous characters can also set the interrupt flag URXIFG.

Figure 12–14. Receive Interrupt Operation

Clear

URXS

Clear

τ

(S)

SYNC
Valid Start Bit

Receiver Collects Character
URXSE

From URXD

SYNC

PE
FE

BRK
URXEIE

URXWIE

RXWake

Erroneous Character
Will Not Set Flag URXIFG

Each Character or Address
Will Set Flag URXIFG

Character Received
or

Break Detected

URXIFG

URXIE Request_
Interrupt_Service

SWRST
PUC
UxRXBUF
URXSE

IRQA

URXIFG is reset by a system reset PUC signal, or with a software reset
(SWRST). URXIFG is reset automatically if the interrupt is served
(URXSE = 0) or the receive buffer UxRXBUF is read. A set receive interrupt
flag URXIFG indicates that an interrupt event is waiting to be served. A set
receive interrupt enable bit URXIE enables serving a waiting interrupt request.
Both the receive interrupt flag URXIFG and the receive interrupt enable bit
URXIE are reset with the PUC signal and a SWRST.

Signal URXIFG can be accessed by the software, whereas signal URXS
cannot. When both interrupt events—character receive action and receive
start detection—are enabled by the software, the flag URXIFG indicates that
a character was received but the start-detect interrupt was not. Because the
interrupt software handler for the receive start detection resets the URXSE bit,
this clears the URXS bit and prevents further interrupt requests from URXS.
The URXIFG should already be reset since no set condition was active during
URXIFG latch time.

Interrupt and Enable Functions

12-14

12.4.4 USART Transmit Interrupt Operation

In the transmit interrupt operation, shown in Figure 12–15, the transmit
interrupt flag UTXIFG is set by the transmitter to indicate that the transmitter
buffer UxTXBUF is ready to accept another character. This bit is automatically
reset if the interrupt request service is started or a character is written into the
UxTXBUF. This flag asserts a transmitter interrupt if the local (UTXIE) and
general interrupt enable (GIE) bits are set. The UTXIFG is set after a system
reset PUC signal, or removal of a SWRST.

Figure 12–15. Transmit Interrupt Operation

Clear

UTXIE

Clear

D

Character Moved From
Buffer to Shift Register

Request_
Interrupt_Service

SWRST

UxRXBUF Written Into Transmit Shift Register

Q

UTXIFG

IRQA

VCC

PUC or SWRST

Q
Set

The transmit interrupt enable UTXIE bit controls the ability of the UTXIFG to
request an interrupt, but does not prevent the flag UTXIFG from being set. The
UTXIE is reset with a PUC signal or a software reset (SWRST) bit. The
UTXIFG bit is set after a system reset PUC signal or software reset (SWRST),
but the UTXIE bit is reset to ensure full interrupt-control capability.

Control and Status Registers

12-15USART Peripheral Interface, UART Mode

12.5 Control and Status Registers

The USART control and status registers are byte structured and should be
accessed using byte processing instructions (suffix B). Table 12–3 lists the
registers and their access modes.

Table 12–2.USART0 Control and Status Registers

Register
Short
Form

Register
Type Address Initial State

USART control U0CTL Read/write 070h See section 12.5.1.

Transmit control U0TCTL Read/write 071h See section 12.5.2.

Receive control U0RCTL Read/write 072h See section 12.5.3.

Modulation control U0MCTL Read/write 073h Unchanged

Baud rate 0 U0BR0 Read/write 074h Unchanged

Baud rate 1 U0BR1 Read/write 075h Unchanged

Receive buffer U0RXBUF Read/write 076h Unchanged

Transmit buffer U0TXBUF Read 077h Unchanged

Table 12–3.USART1 Control and Status Registers

Register
Short
Form

Register
Type Address Initial State

USART control U1CTL Read/write 078h See section 12.5.1.

Transmit control U1TCTL Read/write 079h See section 12.5.2.

Receive control U1RCTL Read/write 07Ah See section 12.5.3.

Modulation control U1MCTL Read/write 07Bh Unchanged

Baud rate 0 U1BR0 Read/write 07Ch Unchanged

Baud rate 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer U1RXBUF Read/write 07Eh Unchanged

Transmit buffer U1TXBUF Read 07Fh Unchanged

All bits are random after a PUC signal, unless otherwise noted by the detailed
functional description.

The reset of the USART peripheral interface is performed by a PUC signal or
a SWRST. After a PUC signal, the SWRST bit remains set and the USART
interface remains in the reset condition until it is disabled by resetting the
SWRST bit.

The USART module operates in asynchronous or synchronous mode as
defined by the SYNC bit. The bits in the control registers can have different
functions in the two modes. All bits in this section are described with their
functions in the asynchronous mode (SYNC = 0). Their functions in the
synchronous mode are described in Chapter 13, USART Peripheral Interface,
SPI Mode.

Control and Status Registers

12-16

12.5.1 USART Control Register U0CTL, U1CTL

The information stored in the USART control register (U0CTL for USART0 and
U1CTL for USART1), shown in Figure 12–16, determines the basic operation
of the USART module. The register bits select the communications protocol,
communication format, and parity bit. All bits must be programmed according
to the selected mode before resetting the SWRST bit to disable the reset.

Figure 12–16. USART Control Register U0CTL, U1CTL

7 0

rw–0

U0CTL, 070h
U1CTL, 078h

SPPEV CHAR MM SWRSTListen

rw–0 rw–0 rw–0 rw–0 rw–0 rw–1

PENA SYNC

rw–0

Bit 0: The USART state machines and operating flags are initialized
to the reset condition (URXIFG = URXIE = UTXIE = 0, UTXIFG
= 1) if the software reset bit is set. Until the SWRST bit is reset,
all affected logic is held in the reset state. This implies that after
a system reset the USART must be reenabled by resetting this
bit. The receive and transmit enable flags URXE and UTXE are
not altered by SWRST.

The SWRST bit resets the following bits and flags: URXIE,
UTXIE, URXIFG, RXWAKE, TXWAKE, RXERR, BRK, PE, OE,
and FE

The SWRST bit sets the following bits: UTXIFG, TXEPT

Bit 1: Multiprocessor mode (address/idle-line wake up)
Two multiprocessor protocols, idle-line and address-bit, are
supported by the USART module. The choice of multiprocessor
mode affects the operation of the automatic address decoding
functions.
MM = 0: Idle-line multiprocessor protocol
MM = 1: Address-bit multiprocessor protocol
The conventional asynchronous protocol uses MM-bit reset.

Bit 2: Mode or function of USART module selected
The SYNC bit selects the function of the USART peripheral
interface module. Some of the USART control bits have different
functions in UART and SPI mode.
SYNC = 0: UART function is selected
SYNC = 1: SPI function is selected

Bit 3: The listen bit selects if the transmitted data is fed back internally
to the receiver.
Listen = 0: No feedback
Listen = 1: Transmit signal is internally fed back to the receiver.

This is commonly known as loopback mode.

Control and Status Registers

12-17USART Peripheral Interface, UART Mode

Bit 4: Character length
This register bit selects the length of the character to be
transmitted as either 7 or 8 bits. 7-bit characters do not use the
eighth bit in UxRXBUF and UxTXBUF. This bit is padded with 0.
CHAR = 0: 7-bit data
CHAR = 1: 8-bit data

Bit 5: Number of stop bits
This bit determines the number of stop bits transmitted. The
receiver checks for one stop bit only.
SP = 0: one stop bit
SP = 1: two stop bits

Bit 6: Parity odd/even
If the PENA bit is set (parity bit is enabled), the PEV bit defines
odd or even parity according to the number of odd or even 1 bits
(in both the transmitted and received characters), the address
bit (address-bit multiprocessor mode), and the parity bit.
PEV = 0: odd parity
PEV = 1: even parity

Bit 7: Parity enable
If parity is disabled, no parity bit is generated during
transmission or expected during reception. A received parity bit
is not transferred to the UxRXBUF with the received data as it
is not considered one of the data bits. In address-bit multi-
processor mode, the address bit is included in the parity
calculation.
PEN = 0: Parity disable
PEN = 1: Parity enable

Note: Mark and Space Definitions

The mark condition is identical to the signal level in the idle state. Space is
the opposite signal level: the start bit is always space.

Control and Status Registers

12-18

12.5.2 Transmit Control Register U0TCTL, U1TCTL

The transmit control register shown in Figure 12–17 controls the USART
hardware associated with the transmit operation.

Figure 12–17. Transmitter Control Register U0TCTL, U1TCTL

7 0

rw–0

SSEL1CKPL SSEL0 TXEPTURXSE

rw–0 rw–0 rw–0 rw–0 rw–0 rw–1

Unused TXWake

rw–0

Unused
U0TCTL, 071h
U1TCTL, 078h

Bit 0: The transmitter empty (TXEPT) flag is set when the transmitter
shift register and UxTXBUF are empty, and is reset when data
is written to UxTXBUF. It is set by a SWRST.

Bit 1: Unused

Bit 2: The TXWake bit controls the transmit features of the
multiprocessor communication modes. Each transmission
—started by loading the UxTXBUF—uses the state of the
TXWake bit to initialize the address-identification feature. It must
not be cleared—the USART hardware clears this bit once it is
transferred to the WUT; a SWRST also clears the TXWake bit.

Bit 3: The receive-start edge-control bit, if set, requests a receive
interrupt service. For a successful interrupt service, the
corresponding enable bits URXIE and GIE must be set. The
advantage of this bit is that it starts the controller clock system,
including MCLK, along with the interrupt service, and keeps it
running by modifying the mode control bits. If the selected clock
source is activated, then the receive operation starts, even from
low-power modes.

Bits 4, 5: Source select 0 and 1
The source select bit defines which clock source is used for
baud-rate generation:
SSEL1, SSEL0 0 External clock, UCLKI

1 ACLK
2, 3 SMCLK

Bit 6: Clock polarity CKPL
The CKPL bit controls the polarity of the UCLKI signal.
CKPL = 0: The UCLKI signal has the same polarity as the
UCLK signal.
CKPL = 1: The UCLKI signal has an inverted polarity to the

UCLK signal.

Bit 7: Unused

Control and Status Registers

12-19USART Peripheral Interface, UART Mode

12.5.3 Receiver Control Register U0RCTL, U1RCTL

The receiver-control register shown, in Figure 12–18, controls the USART
hardware associated with the receiver operation and holds error and wake-up
conditions modified by the latest character written to the receive buffer
(UxRXBUF). Once any one of the bits FE, PE, OE, BRK, RXERR, or RXWake
is set, none are reset by receiving another character. The bits are reset by
accessing the receive buffer, by a USART software reset (SWRST), by a
system reset PUC signal, or by an instruction.

Figure 12–18. Receiver-Control Register U0RCTL, U1RCTL
7 0

U0RCTL, 072h
U1RCTL, 07Ah

OEPE BRK RXERRURXEIE

rw–0

FE RXWakeURXWIE

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

Bit 0: The receive error bit (RXERR) indicates that one or more error
flags (FE, PE, OE, or BRK) is set. It is not reset when the error
flags are cleared by instruction.

Bit 1: Receiver wake-up detect
The RXWake bit is set when a received character is an address
character and is transferred into the receive buffer.
Address-bit multiprocessor mode: RXWake is set when the

address bit is set in the
character received.

Idle-line multiprocessor mode: RXWake is set if an idle
URXD line is detected
(11 bits of mark level) in
front of the received
character.

RXWake is reset by accessing the receive buffer (UxRXBUF),
by a USART software reset, or by a system-reset PUC signal.

Bit 2: The receive wake-up interrupt-enable bit (URXWIE) selects the
type of character to set the interrupt flag (URXIFG):
URXWIE = 0: Each character received sets the URXIFG
URXWIE = 1: Only characters that are marked as address

characters set the interrupt flag URXIFG. It
operates identically in both multiprocessor
modes.

The wake-up interrupt enable feature depends on the receive
erroneous-character feature. See also Bit 3, URXEIE.

Bit 3: The receive erroneous-character interrupt-enable bit URXEIE
selects whether an erroneous character is to set the interrupt
flag URXIFG.
URXEIE = 0: Each erroneous character received does not

alter the interrupt flag URXIFG.
URXEIE = 1: All characters can set the interrupt flag URXIFG

as described in Table 12–4, depending on the
conditions set by the URXWIE bit.

Control and Status Registers

12-20

Table 12–4.Interrupt Flag Set Conditions

URXEIE URXWIE
Char.

w/Error
Char.

Address
Description Flag URXIFG
After a Character Is Received

0 X 1 X Unchanged

0 0 0 X Set

0 1 0 0 Unchanged

0 1 0 1 Set

1 0 X X Set (Receives all characters)

1 1 X 0 Unchanged

1 1 X 1 Set

Bit 4: The break detect bit (BRK) is set when a break condition occurs
and the URXEIE bit is set. The break condition is recognized if
the RXD line remains continuously low for at least 10 bits,
beginning after a missing first stop bit. It is not cleared by receipt
of a character after the break is detected, but is reset by a
SWRST, a system reset, or by reading the UxRXBUF. The
receive interrupt flag URXIFG is set if a break is detected.

Bit 5: The overrun error flag bit OE is set when a character is
transferred into the UxRXBUF before the previous character is
read out. The previous character is overwritten and lost. OE is
reset by a SWRST, a system reset, or by reading the UxRXBUF.

Bit 6: The parity error flag bit PE is set when a character is received
with a mismatch between the number of 1s and its parity bit. The
parity checker includes the address bit, used in the address-bit
multiprocessor mode, in the calculation. The flag is disabled if
parity generation and detection are not enabled. In this case the
flag is read as 0. It is reset by a SWRST, a system reset, or by
reading the UxRXBUF.

Bit 7: The framing error flag bit FE is set when a character is received
with a 0 stop bit and is loaded into the receive buffer. Only the
first stop bit is checked when more than one is used. The missing
stop bit indicates that the start-bit synchronization is lost and the
character is incorrectly framed. FE is reset by a SWRST, a
system reset, or by reading the UxRXBUF.

Note: Receive Status Control Bits

The receive status control bits FE, PE, OE, BRK, and RXWake are set by the
hardware according to the conditions of the characters received. Once the
bits are set, they remain set until the software resets them directly, or there
is a reading of the receive buffer. False character interpretation or missing-
interrupt capability can result in uncleared error bits.

Control and Status Registers

12-21USART Peripheral Interface, UART Mode

12.5.4 Baud Rate Select and Modulation Control Registers

The baud-rate generator uses the content of the baud-rate select registers
UxBR0 and UxBR1 shown in Figure 12–19, with the modulation control
register to generate the serial data-stream bit timing.

Figure 12–19. USART Baud Rate Select Register

27

7 0
U0BR0, 074h
U1BR0, 07Ch 26 25 24 23 22 21 20

rw

215

7 0
U0BR1, 075h
U1BR1, 07Dh 214 213 212 211 210 29 28

rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

Baud rate =
BRCLK

UxBR� 1
n �

n–1

i�0
mi

with UxBR= [UxBR1, UxBR0]

The baud-rate control register range is: 3 ≤ UxBR < 0FFFFh

Note:

Unpredictable receive and transmission occur if UxBR <3.

The modulation control register, shown in Figure 12–20, ensures proper timing
generation with the UxBR0 and UxBR1, even with crystal frequencies that are
not integer multiples of the required baud rate.

Figure 12–20. USART Modulation Control Register

7 0
U0MCTL, 073h
U1MCTL, 07Bh m5m6 m4 m0m3m7 m1m2

rw rw rw rw rw rw rw rw

The timing of the running bit is expanded by one clock cycle of the baud-rate-
divider input clock if bit mi is set.

Each time a bit is received or transmitted, the next bit in the modulation control
register determines the present bit timing. The first bit time in the protocol—the
start bit time—is determined by UxBR plus m0; the next bit is determined by
UxBR plus m1, and so on.

The modulation sequence is:

m0 – m1 – m2 – m3 – m4 – m5 – m6 – m7 – m0 – m1 – m2 –

Control and Status Registers

12-22

12.5.5 Receive-Data Buffer U0RXBUF, U1RXBUF

The receive-data buffer, shown in Figure 12–21, contains previous data from
the receiver shift register. Reading the receive-data buffer resets the
receive-error bits, the RXWake bit, and the interrupt flag (URXIFG).

Figure 12–21. USART0 Receive Data Buffer U0RXBUF, U1RXBUF

27

7 0
U0RXBUF, 076h
U1RXBUF, 07Eh 26 25 24 23 22 21 20

r r r r r r r r

In seven-bit length mode, the MSB of the UxRXBUF is always reset.

The receive data buffer is loaded with the recently-received character as
described in Table 12–5, when receive and control conditions are true.

Table 12–5.Receive Data Buffer Characters

URXEIE URXWIE Load UxRXBUF With: PE FE BRK

0 1 Error-free address characters 0 0 0

1 1 All address characters X X X

0 0 Error-free characters 0 0 0

1 0 All characters X X X

12.5.6 Transmit Data Buffer U0TXBUF, U1TXBUF

The transmit data buffer, shown in Figure 12–22, contains current data to be
transmitted.

Figure 12–22. Transmit Data Buffer U0TXBUF, U1TXBUF

27

7 0
U0TXBUF, 077h
U1TXBUF, 07Fh 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

The UTXIFG flag indicates that the UxTXBUF buffer is ready to accept another
character for transmission.

The transmission is initialized by writing data to UxTXBUF. The transmission
of this data is started immediately if the transmitter shift register is empty or is
going to be empty.

Note: Writing to UxTXBUF

Writing data to the transmit-data buffer must only be done if buffer UxTXBUF
is empty; otherwise, an unpredictable character can be transmitted.

Utilizing Features of Low-Power Modes

12-23USART Peripheral Interface, UART Mode

12.6 Utilizing Features of Low-Power Modes

There are several functions or features of the USART that support the ultralow-
power architecture of the MSP430. These include:

� Support system start up from any processor mode by sensing of UART
frame-start condition

� Use the lowest input clock frequency for the required baud rate

� Support multiprocessor modes to reduce use of MSP430 resources

12.6.1 Receive-Start Operation From UART Frame

The most effective use of start detection in the receive path is achieved when
the baud-rate clock runs from SMCLK. In this configuration, the MSP430 can
be put into a low-power mode with SMCLK disabled. The receive-start
condition is the negative edge from the signal on pin URXD. Each time the
negative edge triggers the interrupt flag URXS, it requests a service when
enable bits URXIE and GIE are set. This wakes the MSP430 and the system
returns to active mode, supporting the USART transfer.

Figure 12–23. Receive-Start Conditions

Clear

URXS

Clear

τ

(S)

SYNC
Valid Start Bit

Receiver Collects Character
URXSE

From URXD

SYNC

PE
FE

BRK
URXEIE

URXWIE

RXWake

Erroneous Character
Will Not Set Flag URXIFG

Each Character or Address
Will Set Flag URXIFG

Character Received
or

Break Detected

URXIFG

URXIE Request_
Interrupt_Service

SWRST
PUC
UxRXBUF Read
URXSE

IRQA

D Q

Three character streams do not set the interrupt flag (URXIFG):

� Erroneous characters (URXEIE = 0)
� Address characters (URXWIE = 1)
� Invalid start-bit detection

The interrupt software should handle these conditions.

Utilizing Features of Low-Power Modes

12-24

12.6.1.1 Start Conditions

The URXD signal feeds into the USART module by first going into a deglitch
circuit. Glitches cannot trigger the receive-start condition flag URXS, which
prevents the module from being started from small glitches on the URXD line.
Because glitches do not start the system or the USART module, current
consumption is reduced in noisy environments. Figure 12–24 shows the
accepted receive-start timing condition.

Figure 12–24. Receive-Start Timing Using URXS Flag, Start Bit Accepted

URXS is Reset in the Interrupt
Handler Using Control Bit URXSE

Majority Vote

URXD

URXS

tτ

The UART stops receiving a character when the URXD signal exceeds the
deglitch time tτ but the majority vote on the signal fails to detect a start bit, as
shown in Figure 12–25. The software should handle this condition and return
the system to the appropriate low-power mode. The interrupt flag URXIFG is
not set.

Figure 12–25. Receive Start Timing Using URXS Flag, Start Bit Not Accepted

URXS is Reset in The Interrupt
Handler Using Control Bit URXSE

URXD

URXS

tτ

Majority Vote

Glitches at the URXD line are suppressed automatically and no further activity
occurs in the MSP430 as shown in Figure 12–26. The data for the deglitch time
tτ is noted in the corresponding device specification.

Figure 12–26. Receive Start Timing Using URXS Flag, Glitch Suppression

URXD

URXS

Majority Vote

tτ

The interrupt handler must reset the URXSE bit in control register UxCTL to
prevent further interrupt service requests from the URXS signal and to enable
the basic function of the receive interrupt flag URXIFG.

Utilizing Features of Low-Power Modes

12-25USART Peripheral Interface, UART Mode

**
* Interrupt handler for frame start condition and *
* Character receive *

**

IFG2 EQU3 ; URXIFG and UTXIFG in
; address 3

U0TCTL EQU 71h ;
UTXIFG0 EQU0 ;
URXSE EQU 8 ;

;
U0RX_Int BIT.B #URXIFG0,&IFG2 ; test URXIFG signal to

JNE ST_COND ; check if frame start
; condition

.....

.....
ST_COND BIC.B #URXSE,&U0TCTL ; clear ff/signal URXS,

; stop further interrupt
; requests

BIS.B #URXSE,&U0TCTL ; Prepare FF_URXS for next
; frame start bits and set

..... ; the conditions to run the

..... ; clock needed for UART RX

Note: Break Detect (BRK) Bit With Halted UART Clock

If the UART operates with the wake-up-on-start-condition mode and
switches off the UCLK whenever a character is completely received, a
communication line break cannot be detected automatically by the UART
hardware. The break detection requires the baud-rate generator BRSCLK,
but it is stopped upon the missing UCLK.

12.6.2 Maximum Utilization of Clock Frequency vs Baud Rate UART Mode

The current consumption increases linearly with the clock frequency. It should
be kept to the minimum required to meet application conditions. Fast
communication speed is needed for calibration and testing in manufacturing
processes, alarm responses in critical applications, and response time to
human requests for information.

The MSP430 USART can generate baud rates up to one third of the clock
frequency. An additional modulation of the baud-rate timing adjusts timing for
individual bits within a frame. The timing is adjusted from bit to bit to meet
timing requirements even when a noninteger division is needed. Baud rates
up to 4800 baud can be generated from a 32,768 Hz crystal with maximum
errors of 11 percent. Standard UARTs—even with the worst maximum error
(–14.6 percent)—can obtain maximum baud rates of 75 baud.

Baud Rate Considerations

12-26

12.6.3 Support of Multiprocessor Modes for Reduced Use of MSP430 Resources

Communication systems can use multiprocessor modes with multiple-
character idle-line or address-bit protocols. The first character can be a target
address, a message identifier, or can have another definition. This character
is interpreted by the software and, if it is of any significance to the application,
the succeeding characters are collected and further activities are defined. An
insignificant first character would stop activity for the processing device. This
application is supported by the wake-up interrupt feature in the receive
operation, and sends wake-up conditions along with a transmission. Avoiding
activity on insignificant characters reduces consumption of MSP430
resources and the system can remain in the most efficient power-conserving
mode.

In addition to the multiprocessor modes, rejecting erroneous characters saves
MSP430 resources. This practice prevents interrupt handling of the erroneous
characters. The processor waits in the most efficient power-conserving mode
until a character is processed.

12.7 Baud Rate Considerations

The MSP430 baud-rate generator uses a divider and a modulator. A given
crystal frequency and a required baud rate determines the required division
factor N:

N = BRCLK
baud rate

The required division factor N usually has an integer part and a fraction. The
divider in the baud rate generator realizes the integer portion of the division
factor N, and the modulator meets the fractional part as closely as possible.
The factor N is defined as:

N� UxBR� 1
n �

n–1

i�0
mi

Where:

N: Target division factor
UxBR: 16-bit representation of registers UxBR1 and UxBR0
i: Actual bit in the frame
n: Number of bits in the frame
mi : Data of the actual modulation bit

Baud rate� BRCLK
N

�
BRCLK

UxBR� 1
n �

n–1

i�0

mi

Baud Rate Considerations

12-27USART Peripheral Interface, UART Mode

12.7.1 Bit Timing in Transmit Operation

The timing for each individual bit in one frame or character is the sum of the
actual bit timings as shown in Figure 12–27. The baud-rate generation error
shown in Figure 12–28 in relation to the required ideal timing, is calculated for
each individual bit. The relevant error information is the error relative to the
actual bit, not the overall relative error.

Figure 12–27. MSP430 Transmit Bit Timing

0 1 2 3 4 5 6 7 8 9 10 11 12

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

i

ti

ST D0 D6 D7
Mark

Space

[2nd Stop Bit, SP = 1]

[Address Bit, MM = 1]

[Parity Bit, PE = 1]

[8th Data Bit, Char = 1]

BRCLK

URXD

Figure 12–28. MSP430 Transmit Bit Timing Errors

0 1 8 9 10 11

t0 t1 t8 t9 t10 t11

t0 t1 t8 t9 t10 t11

ST D0 D7 PA

i

ttarget
terror

tactual

URXD
Mark

Space

Even small errors per bit (relative errors) can result in large cumulative errors.
They must be considered to be cumulative, not relative. The error of an
individual bit can be calculated by:

Error [%] �
�

n–1

i�0
tactuali

� �
n–1

i�0
ttargeti

tbaud rate
� 100%

or,

Error [%] � �baud rate
BRCLK

��(i� 1)� UxBR� �
n–1

i�0
mi�� (i� 1)�� 100%

With:

baud rate: Required baud rate
BRCLK: Input frequency – selected for UCLK, ACLK, or MCLK

i = 0 for the start bit, 1 for the data bit D0, and so on
UxBR: Division factor in registers UxBR1 and UxBR0

Baud Rate Considerations

12-28

Example 12–3. Error Example for 2400 Baud

The following data are assumed:

Baud rate = 2400
BRCLK = 32,768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.67
m = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1

and m0=1
The LSB (m0) of the modulation register is used first.

Start bit Error [%] � �baud rate
BRCLK

� ((0� 1)� UxBR� 1)–1�� 100% � 2.54%

Data bit D0 Error [%] � �baud rate
BRCLK

� ((1� 1)� UxBR� 2)–2�� 100% � 5.08%

Data bit D1 Error [%] � �baud rate
BRCLK

� ((2� 1)� UxBR� 2)–3�� 100% � 0.29%

Data bit D2 Error [%] � �baud rate
BRCLK

� ((3� 1)� UxBR� 3)–4�� 100% � 2.83%

Data bit D3 Error [%] � �baud rate
BRCLK

� ((4� 1)� UxBR� 3)–5�� 100% ��1.95%

Data bit D4 Error [%] � �baud rate
BRCLK

� ((5� 1)� UxBR� 4)–6�� 100% � 0.59%

Data bit D5 Error [%] � �baud rate
BRCLK

� ((6� 1)� UxBR� 5)–7�� 100% � 3.13%

Data bit D6 Error [%] � �baud rate
BRCLK

� ((7� 1)� UxBR� 5)–8�� 100% � �1.66%

Data bit D7 Error [%] � �baud rate
BRCLK

� ((8� 1)� UxBR� 6)–9�� 100% � 0.88%

Parity bit Error [%] � �baud rate
BRCLK

� ((9� 1)� UxBR� 7)–10�� 100% � 3.42%

Stop bit 1 Error [%] � �baud rate
BRCLK

� ((10� 1)� UxBR� 7)–11�� 100% ��1.37%

Stop bit 2 Error [%] � �baud rate
BRCLK

� ((11� 1)� UxBR� 8)–12�� 100% � 1.17%

Baud Rate Considerations

12-29USART Peripheral Interface, UART Mode

12.7.2 Typical Baud Rates and Errors

The standard baud rate data needed for the baud rate registers and the
modulation register are listed in Table 12–6 for the 32,768-Hz watch crystal
(ACLK) and MCLK, assumed to be 32 times the ACLK frequency. The error
listed is calculated for the transmit and receive paths. In addition to the error
for the receive operation, the synchronization error must be considered.

Table 12–6.Commonly Used Baud Rates, Baud Rate Data, and Errors

Divide by ACLK (32,768 Hz) MCLK (1,048,576 Hz)

Baud
Rate ACLK MCLK UxBR1 UxBR0 UxMCTL

Max.
TX

Error %

Max.
RX

Error %

Synchr.
RX

Error % UxBR1 UxBR0 UxMCTL

Max.
TX

Error %

Max.
RX

Error %

75 436.9
1

13,981 1 B4 FF –0.1/0.3 –0.1/0.3 ± 2 36 9D FF 0/0.1 ± 2

110 297.8
9

9532.51 1 29 FF 0/0.5 0/0.5 ± 3 25 3C FF 0/0.1 ± 3

150 218.4
5

6990.5 0 DA 55 0/0.4 0/0.4 ± 2 1B 4E FF 0/0.1 ± 2

300 109.2
3

3495.25 0 6D 22 –0.3/0.7 –0.3/0.7 ± 2 0D A7 00 –0.1/0 ± 2

600 54.61 1747.63 0 36 D5 – 1/1 – 1/1 ± 2 06 D3 FF 0/0.3 ± 2

1200 27.31 873.81 0 1B 03 – 4/3 – 4/3 ± 2 03 69 FF 0/0.3 ± 2

2400 13.65 436.91 0 0D 6B 6/3 – 6/3 ± 4 01 B4 FF 0/0.3 ± 2

4800 6.83 218.45 0 06 6F – 9/11 – 9/11 ± 7 0 DA 55 0/0.4 ± 2

9600 3.41 109.23 0 03 4A – 21/12 – 21/12 ± 15 0 6D 03 –0.4/1 ± 2

19,200 54.61 0 36 6B –0.2/2 ± 2

38,400 27.31 0 1B 03 – 4/3 ± 2

76,800 13.65 0 0D 6B – 6/3 ± 4

115,200 9.10 0 09 08 – 5/7 ± 7

The maximum error is calculated for the receive and transmit modes. The
receive-mode error is the accumulated time versus the ideal scanning time in
the middle of each bit. The transmit error is the accumulated timing error
versus the ideal time of the bit period.

The MSP430 USART peripheral interface allows baud rates nearly as high as
the clock rate. It has a low error accumulation as a result of modulating the
individual bit timing. In practice, an error margin of 20% to 30% supports
standard serial communication.

Baud Rate Considerations

12-30

12.7.3 Synchronization Error

The synchronization error, shown in Figure 12–29, results from the
asynchronous timing between the URXD pin data signal and the internal clock
system. The receive signal is synchronized with the BRSCLK clock. The
BRSCLK clock is sixteen to thirty-one times faster than the bit timing, as
described.

BRSCLK = BRCLK for N ≤ 1F
BRSCLK = BRCLK/2 for 20h ≤ N ≤ 3Fh
BRSCLK = BRCLK/4 for 40h ≤ N ≤ 7Fh
BRSCLK = BRCLK/8 for 80h ≤ N ≤ FFh
BRSCLK = BRCLK/16 for 100 ≤ N ≤ 1FF
BRSCLK = BRCLK/32 for 200 ≤ N ≤ 3FFh
BRSCLK = BRCLK/64 for 400 ≤ N ≤ 7FFh
BRSCLK = BRCLK/128 for 800h ≤ N ≤ FFFh
BRSCLK = BRCLK/256 for 1000h ≤ N ≤ 1FFFh
BRSCLK = BRCLK/512 for 2000h ≤ N ≤ 3FFFh
BRSCLK = BRCLK/1024 for 4000h ≤ N ≤ 7FFFh
BRSCLK = BRCLK/2048 for 8000h ≤ N ≤ FFFFh

Figure 12–29. Synchronization Error

1 2 3 4 5 6

0i

t0ttarget

7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

t0 t1 t2

ST D0 D2

D0 D2ST

Synchronization Error ± 0.5x BLSCLK

Int(UxBR/2)+m0 =
Int (13/2)+1 = 6+1 = 7

Majority Vote Taken Majority Vote Taken

UxBR +m1 = 13+1 = 14 UxBR +m2 = 13+0 = 13

Majority Vote Taken

BRSCLK

URXD

URXDS

tactual

Sample
URXDS

Baud Rate Considerations

12-31USART Peripheral Interface, UART Mode

The target start-bit detection-baud-rate timing ttarget(0) is half the baud-rate
timing tbaud rate because the bit is tested in the middle of its period. The target
baud rate timing ttargeti for all of the other succeeding bits is the baud rate timing
tbaud rate.

Error [%] � 	baud rate
BRCLK

��2 � �m0 � int 	UxBR�2
� � 	i � UxBR � �
n–1

i�1
mi
�� 1–i
 � 100%

Error [%] �
tactual0

� ttarget0

0.5 � ttarget0

�
�

n–1

i�1
tactuali

� �
n–1

i�1
ttargeti

ttargeti

� 100%

OR

Where:
baud rate is the required baud rate
BRCLK is the input frequency—selected for UCLK, ACLK, or MCLK
i = 0 for the start bit, 1 for data bit D0, and so on
UxBR is the division factor in registers UxBR1 and UxBR0

Example 12–4. Synchronization Error—2400 Baud

The following data are assumed:

Baud rate = 2400
BRCLK = 32,768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.67
m = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and

m0=1
The LSB (m0) of the modulation register is used first.

Start bit Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (0 � UxBR � 0 –0)]–1
� 100% � 2.54%

Data bit D0 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (1 � UxBR � 1)]–1–1
� 100% � 5.08%

Data bit D1 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (2 � UxBR � 1)]–1–2
� 100% � 0.29%

Data bit D2 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (3 � UxBR � 2)]–1–3
� 100% � 2.83%

Data bit D3 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (4 � UxBR � 2)]–1–4
� 100% � –1.95%

Data bit D4 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (5 � UxBR � 3)]–1–5
� 100% � 0.59%

Data bit D5 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (6 � UxBR � 4)]–1–6
� 100% � 3.13%

Data bit D6 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (7 � UxBR � 4)]–1–7
� 100% � –1.66%

Data bit D7 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (8 � UxBR � 5)]–1–8
� 100% � 0.88%

Parity bit Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (9 � UxBR � 6)]–1–9
� 100% � 3.42%

Stop bit 1 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (10 � UxBR � 6)]–1–10
� 100% � –1.37%

Stop bit 2 Error [%] � 	baud rate
BRCLK

� [2x(1 � 6) � (11 � UxBR � 7)]–1–11
� 100% � –1.17%

12-32

13-1USART Peripheral Interface, SPI Mode

USART Peripheral Interface, SPI Mode

The universal synchronous/asynchronous receive/transmit (USART) serial-
communication peripheral supports two serial modes with one hardware
configuration. These modes shift a serial-bit stream in and out of the MSP430
at a programmed rate or at a rate defined by an external clock. The first mode
is the universal asynchronous-receive/transmit (UART) communication
protocol (discussed in Chapter 12); the second is the serial peripheral-
interface (SPI) protocol.

Bit SYNC in control register U0CTL for UART0 and U1CTL for USART1
selects the required mode:

SYNC = 0: UART—asynchronous mode selected
SYNC = 1: SPI—synchronous mode selected

This chapter describes the SPI mode.

Topic Page

13.1 USART Peripheral Interface 13-2.

13.2 USART Peripheral Interface, SPI Mode 13-3.

13.3 Synchronous Operation 13-4.

13.4 Interrupt and Control Functions 13-9.

13.5 Control and Status Registers 13-15.

Chapter 13

13-2

13.1 USART Peripheral Interface

The USART peripheral interface connects to the CPU as a byte-peripheral
module. It connects the MSP430 to the external system environment with
three or four external pins. Figure 13–1 shows the USART peripheral-interface
module

Figure 13–1. Block Diagram of USART

0

Receive Buffer
U1RXBUF or U0RXBUF

SSEL0SSEL1

UCLKI
ACLK

SMCLK

1
2

3

WUT

CKPH

Receive Shift Register

Receive Status

0

SYNC

SYNC

Baud-Rate Generator

Baud-Rate Register
U1BR or U0BR

Baud-Rate Generator

SYNCSYNC

SYNC
UCLKS

Transmit Shift Register

Transmit Buffer
U1TXBUF or U0TXBUF

0

1

1

0

1

0

Clock Phase and Polarity

SYNC CKPL

UCLKI

UCLKS

UCLK

SIMO

UTXD

STE

URXD

SOMI

MMListen
SYNC RXE

TXWake

SMCLK

13-3USART Peripheral Interface, SPI Mode

13.2 USART Peripheral Interface, SPI Mode

The USART peripheral interface is a serial channel that shifts a serial bit
stream of 7 or 8 bits in and out of the MSP430. The SPI mode is chosen when
control bit SYNC in the USART control register (U0CTL for UART0 and U1CTL
for USART1) is set.

13.2.1 SPI Mode Features

The features of the SPI mode are:

� Supports three-pin and four-pin SPI operations via SOMI, SIMO, UCLK,
and STE

� Master or slave mode

� Separate shift registers for receive (UxRXBUF) and transmit (UxTXBUF)

� Double buffers for receiving and transmitting

� Has clock-polarity and clock-phase control

� Has clock-frequency control in master mode

� Supports a character length of seven or eight bits per character

Figure 13–2 shows the USART module in SPI mode.

Figure 13–2. Block Diagram of USART—SPI Mode

0

Receive Buffer
U1RXBUF or U0RXBUF

SSEL0SSEL1

ACLK
1
2

3
SMCLK

CKPH

Receive Shift Register

Receive Status

Baud-Rate Generator

Baud-Rate Register

Baud-Rate Generator

SYNCSYNC

SYNC
UCLKS

Transmit Shift Register

Transmit Buffer
U1TXBUF or U0TXBUF

0

1

1

0

1

0

Clock Phase and Polarity

SYNC CKPL

(UCLKI)

UCLKS

UCLK

SIMO

STE

SOMI

MMListen

SYNC = 1

MSB First

MSB First

UCLKI

SMCLK

Synchronous Operation

13-4

13.3 Synchronous Operation

In USART synchronous mode, data and clock signals transmit and receive
serial data. The master supplies the clock and data. The slaves use this clock
to shift serial information in and out.

The four-pin SPI mode also uses a control line to enable a slave to receive and
transmit data. The line is controlled by the master.

Three or four signals are used for data exchange:

� SIMO Slave in, master out
The direction is defined by SIMODIR (SIMODIR=0, input
direction) SIMODIR = [SYNC .and. MM .and. (STC .or. STE)]
Output direction is selected when SPI + Master Mode is selected.
When 4-pin SPI is selected (STC=0) input direction is forced by
a low level on external STE pin.

� SOMI Slave out, master in
The direction is defined by SOMIDIR (SIMODIR=0 input
direction) SOMIDIR = [SYNC .and. .not.(MM)] .or.
[STC .or. .not.(STE)]
Output direction is selected when SPI + Slave Mode is selected.
When 4-pin SPI is selected (STC=0) input direction is forced by
a low level on external STE pin.

� UCLK USART clock. The master drives this signal and the slave uses
it to receive and transmit data.
The direction is defined by UCLKDIR (UCLKDIR=0 input
direction) UCLKDIR = [SYNC .and. MM .and. (STC .or. STE)]
Output direction is selected when SPI + Master Mode is selected.
When 4-pin SPI is selected (STC=0) input direction is forced by
a low level on external STE pin.

� STE Slave transmit enable. Used in four-pin mode to control more
than one slave in a multiple master and slave system.

The interconnection of the USART in synchronous mode to another device’s
serial port with one common transmit/receive shift register is shown in
Figure 13–3, where MSP430 is master or slave. The operation of both devices
is identical.

Synchronous Operation

13-5USART Peripheral Interface, SPI Mode

Figure 13–3. MSP430 USART as Master, External Device With SPI as Slave

Receive Buffer UxRXBUF

Receive Shift Register

MSB LSB

Transmit Buffer UxTXBUF

Transmit Shift Register

MSB LSB

SPI Receive Buffer

Data Shift Register (DSR)

MSB LSB

SOMI SOMI

SIMO SIMOMASTER SLAVE

Px.x STE

STE SS
Port.x

UCLK SCLK
MSP430 USART COMMON SPI

The master initiates the transfer by sending the UCLK signal. For the master,
data is shifted out of the transmit shift register on one clock edge, and shifted
into the receive shift register on the opposite edge. For the slave, the data
shifting operation is the same and uses one common register for transmitting
and receiving data. Master and slave send and receive data at the same time.

Whether the data is meaningful or dummy data depends on the application
software:

� Master sends data and slave sends dummy data
� Master sends data and slave sends data
� Master sends dummy data and slave sends data

Figures 13–4 and 13–5 show an example of a serial synchronous data transfer
for a character length of seven bits. The initial content of the receive shift
register is 00. The following events occur in order:

A) Slave writes 98h to the data shift register (DSR) and waits for the master
to shift data out.

B) Master writes B0h to UxTXBUF, which is immediately transferred to the
transmit shift register, and starts the transmission.

C) First character is finished and sets the interrupt flags.

D) Slave reads 58h from the receive buffer (right justified).

E) Slave writes 54h to the DSR and waits for the master to shift out data.

F) Master reads 4Ch from the receive buffer UxRXBUF (right justified).

G) Master writes E8h to the transmit buffer UxTXBUF and starts the
transmission.

Note: If USART is in slave mode, no UCLK is needed after D), until G).
However, in master mode, two clocks are used internally (not on UCLK
signal) to end transmit/receive of first character and prepare the
transmit/receive of the next character.

Synchronous Operation

13-6

H) Second character is finished and sets the interrupt flag.

I) Master receives 2Ah and slave receives 74h (right justified).

Figure 13–4. Serial Synchronous Data Transfer

7 6 5 4 3 2 1 7 6 5 4 3 2 1

AB C D E F G HICKPL = 0
CKPH= 0

CKPL = 1
CKPH= 0

SIMO From
Master

SOMI From
Slave

STE
Master Interrupt

UTXIFG
Slave Interrupt

URXIFG
Shift Data Out

Shift Data In

Figure 13–5. Data Transfer Cycle

1 0 0 1 1 0 0 0

0 1 0 0 1 1 0 0

MSB LSB

1 0 1 1 0 0 0 0

0 1 0 1 1 0 0 0

MSB LSB

S

M

M

S

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

1 1 1 0 1 0 0 0

0 1 1 1 0 1 0 0

S

M

M

S

A: 98h> DSR

C,F: UxRXBUF

from Initial State

E: 54h> DSR

H,I: UxRXBUF
†

†

B: B0h> UxTXBUF

C,D: DSR

G:E8h> UxTXBUF

H,I: DSR

† In 7 bit mode, the MSB of RXBUF is always read as 0.
S: Slave M: Master

Synchronous Operation

13-7USART Peripheral Interface, SPI Mode

Figure 13–6 illustrates the USART module functioning as a slave in a three or
four-pin SPI configuration.

Figure 13–6. MSP430 USART as Slave in Three-Pin or Four-Pin Configuration

Receive Buffer UxRXBUF

Receive Shift Register

LSBMSB

Transmit Buffer UxTXBUF

Transmit Shift Register

LSBMSB

SPI Receive Buffer

Data Shift Register DSR

LSBMSB

SOMISOMI

SIMOSIMOMASTER SLAVE

Px.x STE

STE SS
Port.x

UCLKSCLK
MSP430 USARTCOMMON SPI

13.3.1 Master SPI Mode

The master mode is selected when the master-mode bit (MM) in control
register UxCTL is set. The USART module controls the serial-communication
network by providing UCLK at the UCLK pin. Data is output on the SIMO pin
during the first UCLK period and latched from the SOMI pin in the middle of
the corresponding UCLK period.

The data written to the transmit buffer (UxTXBUF) is moved to the transmit shift
register as soon as the shift register is empty. This initiates the data transfer
on the SIMO pin starting with the most-significant bit. At the same time,
received data is shifted into the receive shift register and, upon receiving the
selected number of bits, the data is transferred to the receive buffer
(UxRXBUF) setting the receive interrupt flag (URXIFG). Data is shifted into the
receive shift register starting with the most-significant bit. It is stored and
right-justified in the receive buffer (UxRXBUF). When previous data is not read
from the receive buffer (UxRXBUF), the overrun error bit (OE) is set.

Note: USART Synchronous Master Mode, Receive Initiation

The master writes data to the transmit buffer UxTXBUF to receive a
character. The receive starts when the transmit shift register is empty and the
data is transferred to it. Receive and transmit operations always take place
together, at opposite clock edges.

The protocol can be controlled using the transmit-interrupt flag UTXIFG, or the
receive-interrupt flag URXIFG. By using UTXIFG immediately after sending
the shift-register data to the slave, the buffer data is transferred to the shift
register and the transmission starts. The slave receive timing should ensure
that there is a timely pick-up of the data. The URXIFG flag indicates when the
data shifts out and in completely. The master can use URXIFG to ensure that
the slave is ready to correctly receive the next data.

Synchronous Operation

13-8

13.3.1.1 Four-Pin SPI Master Mode

The signal on STE is used by the active master to prevent bus conflicts with
another master. The STE pin is an input when the corresponding PnSEL bit
(in the I/O registers) selects the module function. The master operates
normally while the STE signal is high. Whenever the STE signal is low, for
example, when another device makes a request to become master, the actual
master reacts such that:

� The pins that drive the SPI bus lines SIMO and UCLK are set to inputs.

� The error bit FE and the interrupt flag URXIFG in registers U0RCTL and
U1RCTL, respectively, are set.

The bus conflict is then removed: SIMO and UCLK do not drive the bus lines,
and the error flag indicates the system integrity violation to the software. Pins
SIMO and UCLK are forced to the input state while STE is in a low state, and
they return to the conditions defined by the corresponding control bits when
STE returns to a high state.

In the three-pin mode, the STE input signal is not relevant.

13.3.2 Slave SPI Mode

The slave mode is selected when bit MM of the control register is reset and
synchronous mode is selected.

The UCLK pin is used as the input for the serial-shift clock supplied by an
external master. The data-transfer rate is determined by this clock and not by
the internal bit-rate generator. The data, loaded into the transmit shift register
through the transmit buffer (UxTXBUF) before the start of UCLK, is transmitted
on the SOMI pin using the UCLK supplied from the master. Simultaneously,
the serial data applied to the SIMO pin are shifted into the receive shift register
on the opposite edge of the clock.

The receive-interrupt flag URXIFG indicates when the data is received and
transferred into the receive buffer. The overrun-error bit is set when the
previously-received data is not read before the new data is written to the
receive buffer.

13.3.2.1 Four-Pin SPI Slave Mode

In the four-pin SPI mode, the STE signal is used by the slave to enable the
transmit and receive operations. It is applied from the SPI master. The receive
and transmit operations are disabled when the STE signal is high, and enabled
when it is low. Whenever the STE signal becomes high, any receive operation
in progress is halted and then continues when the STE signal is low again. The
STE signal enables one slave to access the data lines. The SOMI is input if
STE is set high.

Interrupt and Control Functions

13-9USART Peripheral Interface, SPI Mode

13.4 Interrupt and Control Functions

The USART peripheral interface serves two main interrupt sources for
transmission and reception. Two interrupt vectors serve receive and transmit
interrupt events.

The interrupt control bits and flags and enable bits of the USART peripheral
interface are located in the SFR address range. The bit functions are
described below in Table 13–1. See the peripheral-file map in Appendix A for
the exact bit locations.

Table 13–1.USART Interrupt Control and Enable Bits—SPI Mode

Receive interrupt flag URXIFG‡ Initial state reset (by PUC/SWRST)

Receive interrupt enable URXIE‡ Initial state reset (by PUC/SWRST)

Receive/transmit enable† USPIIE‡ Initial state reset (by PUC)

Transmit interrupt flag UTXIFG‡ Initial state set (by PUC/SWRST)

Transmit interrupt enable UTXIE‡ Initial state reset (by PUC/SWRST)

† Different for UART mode, see Chapter 12
‡ Suffix .0 for USART0 and .1 for USART1

The USART receiver and transmitter operate in parallel and use the same
baud-rate generator in synchronous master mode. In synchronous slave
mode, the external clock applied to UCLK is used for the receiver and the
transmitter. The receiver and transmitter are enabled and disabled together
with the USPIIE bit.

13.4.1 USART Receive/Transmit Enable Bit, Receive Operation

The receive/transmit enable bit (USPIIE) enables or disables collection of the
bit stream on the URXD/SOMI data line. Disabling the USART receiver
(USPIIE = 0) stops the receive operation after completion, or stops a pending
operation if no receive operation is active. In synchronous mode, UCLK does
not shift any data into the receiver shift register.

13.4.1.1 Receive/Transmit Enable Bit—MSP430 as Master

The receive operation functions identically for three-pin and four-pin modes,
as shown in Figure 13–7, when the MSP430 USART is selected to be the SPI
master.

Interrupt and Control Functions

13-10

Figure 13–7. State Diagram of Receiver Enable Operation—MSP430 as Master

Idle State
(Receiver
Enabled)

Receive
Disable

Receiver
Collects

Character

USPIIE = 0 No Data Written
to UxTXBUF Not Completed

USPIIE = 1

USPIIE = 0

USPIIE = 1 Handle Interrupt
Conditions

Character
ReceivedUSPIIE = 1

USPIIE = 0

SWRST
PUC

13.4.1.2 Receive/Transmit Enable Bit—MSP430 as Slave, Three-Pin Mode

The receive operation functions differently for three-pin and four-pin modes
when the MSP430 USART module is selected to be the SPI slave. In the
three-pin mode, shown in Figure 13–8, no external SPI receive-control signal
stops an active receive operation. A PUC signal, a software reset (SWRST),
or a receive/transmit enable (USPIIE) signal can stop a receive operation and
reset the USART.

Figure 13–8. State Diagram of Receive/Transmit Enable—MSP430 as Slave, Three-Pin
Mode

Idle State
(Receive
Enabled)

Receive
Disable

Receiver
Collects

Character

USPIIE = 0 No Clock at UCLK
Not Completed

USPIIE = 1

USPIIE = 0

USPIIE = 1 Handle Interrupt
Conditions

Character
ReceivedUSPIIE = 1

USPIIE = 0

SWRST
PUC

External Clock
Present

Note: USPIIE Reenabled, SPI Mode

After the receiver is completely disabled, a reenabling of the receiver is asyn-
chronous to any data stream on the communication line. Synchronization to
the data stream is handled by the software protocol in three-pin SPI mode.

13.4.1.3 Receive/Transmit Enable Bit—MSP430 as Slave, Four-Pin Mode

In the four-pin mode, shown in Figure 13–9, the external SPI receive-control
signal applied to pin STE stops a started receive operation. A PUC signal, a
software reset (SWRST), or a receive/transmit enable (USPIIE) can stop a
receive operation and reset the operation-control state machine. Whenever
the STE signal is set to high, the receive operation is halted.

Interrupt and Control Functions

13-11USART Peripheral Interface, SPI Mode

Figure 13–9. State Diagram of Receive Enable—MSP430 as Slave, Four-Pin Mode

Idle State
(Receive
Enabled)

Receive
Disable

Receiver
Collects

Character

USPIIE = 0 No Clock at UCLK
Not Completed

USPIIE = 1
and STE = 0

USPIIE = 0

USPIIE = 1 Handle Interrupt
Conditions

Character
ReceivedUSPIIE = 1

USPIIE = 0

SWRST
PUC

External Clock
Present

USPIIE = 1

13.4.2 USART Receive/Transmit Enable Bit, Transmit Operation

The receive/transmit enable bit USPIIE, shown in Figures 13–10 and 13–11,
enables or disables the shifting of a character on the serial data line. If this bit
is reset, the transmitter is disabled, but any active transmission does not halt
until all data previously written to the transmit buffer is transmitted. If the
transmission is completed, any further write operation to the transmitter buffer
does not transmit. When the UxTXBUF is ready, any pending request for
transmission remains, which results in an immediate start of transmission
when USPIIE is set and the transmitter is empty. A low state on the STE signal
removes the active master (four-pin mode) from the bus. It also indicates that
another master is requesting the active-master function.

13.4.2.1 Receive/Transmit Enable—MSP430 as Master

Figure 13–10 shows the transmit-enable activity when the MSP430 is master.

Figure 13–10. State Diagram of Transmit Enable—MSP430 as Master

Idle State
(Transmitter

Enabled)

Transmit
Disable

Transmission
Active

USPIIE = 0 No Data Written
to Transfer Buffer Not Completed

USPIIE = 1

USPIIE = 1

USPIIE = 0

USPIIE = 1,
Data Written to
Transmit Buffer Handle Interrupt

Conditions

Character
TransmittedUSPIIE = 1

USPIIE = 0 And Last Buffer
Entry Is Transmitted

SWRST
PUC

Interrupt and Control Functions

13-12

13.4.2.2 Receive/Transmit Enable, MSP430 is Slave

Figure 13–11 shows the receive/transmit-enable-bit activity when the
MSP430 is slave.

Figure 13–11.State Diagram of Transmit Enable—MSP430 as Slave

Idle State
(Transmitter

Enabled)

Transmit
Disable

Transmission
Active

USPIIE = 0 No Clock at UCLK Not Completed
USPIIE = 1

USPIIE = 1

USPIIE = 0

USPIIE = 1 Handle Interrupt
Conditions

Character
TransmittedUSPIIE = 1

USPIIE = 0

SWRST
PUC

External Clock
Present

When USPIIE is reset, any data can be written regularly into the transmit
buffer, but no transmission is started. Once the USPIIE bit is set, the data in
the transmit buffer are immediately loaded into the transmit shift register and
character transmission is started.

Note: Writing to UxTXBUF, SPI Mode

Data should never be written to transmit buffer UxTXBUF when the buffer is
not ready (UTXIFG = 0) and the transmitter is enabled (USPIIE is set). If data
is written, character shifting can be random.

Note: Writing to UxTXBUF/Reset of Transmitter, SPI Mode

Disabling of the transmitter should be done only if all data to be transmitted
have been moved to the transmit shift register.
 MOV.B #....,&U0TXBUF

 BIC.B #USPIE0,&ME2 ; If BITCLK < SMCLK then the

; transmitter might be stopped

; before the buffer is loaded

; into the transmitter

; shift register

Interrupt and Control Functions

13-13USART Peripheral Interface, SPI Mode

13.4.3 USART Receive-Interrupt Operation

In the receive-interrupt operation shown in Figure 13–12, the receive-interrupt
flag URXIFG is set each time a character is received and loaded into the
receive buffer.

Figure 13–12. Receive Interrupt Operation

URXS

Clear

τ

(S)

SYNC
Valid Start Bit

Receiver Collects Character
URXSE

From URXD

SYNC
PE
FE

BRK
URXEIE

URXWIE

RXWake

Character Received
or

Master Overrun

URXIFG

URXIE Request_
Interrupt_Service

SWRST
PUC
UxRXBUF Read
USPIIE

IRQA

SYNC = 1

Clear

URXIFG is reset by a system reset PUC signal, or by a software reset
(SWRST). UxRXIFG is reset automatically if the interrupt is served or the
receive buffer UxRXBUF is read. The receive interrupt enable bit (USPIIE), if
set, enables a CPU interrupt request as shown in Figure 13–13. The receive
interrupt flag bits URXIFG and USPIIE are reset with a PUC signal or a
SWRST.

Figure 13–13. Receive Interrupt State Diagram

Receive
Character
Completed

Interrupt
Service Started,

GIE = 0
URXIFG = 0

USPIIE = 1

URXIFG = 1
USPIIE = 1 and

GIE = 1 and
Priority Valid

GIE = 0
Priority

Too
Low

URXIFG = 0Wait For Next
Start

USPIIE = 0

SWRST = 1

PUC

Interrupt and Control Functions

13-14

13.4.4 Transmit-Interrupt Operation

In the transmit-interrupt operation shown in Figure 13–14, the transmit-
interrupt flag UTXIFG is set by the transmitter to indicate that the transmitter
buffer UxTXBUF is ready to accept another character. This bit is automatically
reset if the interrupt-request service is started or a character is written to the
UxTXBUF. This flag activates a transmitter interrupt if bits USPIIE and GIE are
set. The UTXIFG is set after a system reset PUC signal, or removal of SWRST.

Figure 13–14. Transmit-Interrupt Operation

Clear

USPIIE

Clear

D

Character Moved From
Buffer to Shift Register

Request_
Interrupt_Service

SWRST

UxTXBUF Written Into Transmit Shift Register

Q

UTXIFG

IRQA

VCC

PUC or SWRST

Q
Set

SYNC = 1

The transmit-interrupt enable bit UTXIE controls the ability of the UTXIFG to
request an interrupt, but does not prevent the UTXIFG flag from being set. The
USPIIE is reset with a PUC signal or a SWRST. The UTXIFG bit is set after a
system reset PUC signal or a SWRST, but the USPIIE bit is reset to ensure full
interrupt-control capability.

Control and Status Registers

13-15USART Peripheral Interface, SPI Mode

13.5 Control and Status Registers

The USART registers, shown in Table 13–2, are byte structured and should be
accessed using byte instructions.

Table 13–2.USART0 Control and Status Registers

Register Short
Form

Register
Type Address Initial State

USART control U0CTL Read/write 070h See Section 13.5.1

Transmit control U0CTL Read/write 071h See Section 13.5.2

Receive control U0RCTL Read/write 072h See Section 13.5.3

Modulation control U0MCTL Read/write 073h Unchanged

Baud rate 0 U0BR0 Read/write 074h Unchanged

Baud rate 1 U0BR1 Read/write 075h Unchanged

Receive buffer U0RXBUF Read/write 076h Unchanged

Transmit buffer U0TXBUF Read 077h Unchanged

Table 13–3.USART1 Control and Status Registers

Register Short
Form

Register
Type Address Initial State

USART control U1CTL Read/write 078h See Section 13.5.1

Transmit control U1TCTL Read/write 079h See Section 13.5.2

Receive control U1RCTL Read/write 07Ah See Section 13.5.3

Modulation control U1MCTL Read/write 07Bh Unchanged

Baud rate 0 U1BR0 Read/write 07Ch Unchanged

Baud rate 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer U1RXBUF Read/write 07Eh Unchanged

Transmit buffer U1TXBUF Read 07Fh Unchanged

All bits are random following the PUC signal, unless otherwise noted by the
detailed functional description.

Reset of the USART module is performed by the PUC signal or a SWRST. After
a PUC signal, the SWRST bit remains set and the USART module remains in
the reset condition. It is disabled by resetting the SWRST bit. The SPI mode
is disabled after the PUC signal.

The USART module operates in asynchronous or synchronous mode as
defined by the SYNC bit. The bits in the control registers can have different
functions in the two modes. All bits are described with their function in the
synchronous mode—SYNC = 1. Their function in the asynchronous mode is
described in Chapter 12.

Control and Status Registers

13-16

13.5.1 USART Control Register

The information stored in the control register, shown in Figure 13–15,
determines the basic operation of the USART module. The register bits select
the communication mode and the number of bits per character. All bits should
be programmed to the desired mode before resetting the SWRST bit.

Figure 13–15. USART Control Register

7 0

rw–0

U0CTL, 070h
U1CTL, 078h CHAR SWRSTListen

rw–0 rw–0 rw–0 rw–0 rw–0 rw–1

Unused SYNC

rw–0

MMUnused Unused

Bit 0: The USART state machines and operating flags are initialized
to the reset condition (URXIFG=USPIIE=0, UTXIFG=1) if the
software reset bit is set. Until the SWRST bit is reset, all affected
logic is held in the reset state. This implies that after a system
reset the USART must be reenabled by resetting this bit.

Bit 1: Master mode is selected when the MM bit is set. The USART
module slave mode is selected when the MM bit is reset.

Bit 2: Peripheral module mode select
The SYNC bit sets the function of the USART peripheral-
interface module. Some of the USART control bits have different
functions in UART and SPI modes.
SYNC = 0: UART function is selected
SYNC = 1: SPI function is selected

Bit 3: The listen bit determines the transmitted data to feed back
internally to the receiver. This is commonly called loopback
mode.

Bit 4: Character length
This register bit sets the length of the character to be transmitted
as either seven or eight bits.
CHAR = 0: 7-bit data
CHAR = 1: 8-bit data

Bit 5: Unused

Bit 6: Unused

Bit 7: Unused

Control and Status Registers

13-17USART Peripheral Interface, SPI Mode

13.5.2 Transmit Control Register U0TCTL, U1TCTL

The transmit control register, shown in Figure 13–16, controls the USART
hardware associated with transmitter operations.

Figure 13–16. Transmit Control Register U0TCTL, U1TCTL
7 0

rw–0

SSEL0 TXEPTUnused

rw–0 rw–0 rw–0 rw–0 rw–0 rw–1

CKPH

rw–0

STCCKPL SSEL1 UnusedU0TCTL, 071h
U1TCTL, 079h

Bit 0: Master mode:
The transmitter-empty flag TXEPT is set when the transmitter
shift register and UxTXBUF are empty, and reset when data are
written to UxTXBUF. It is set again by a SWRST.

Slave mode:
The transmitter-empty flag TXEPT is not set when the trans-
mitter shift register and UxTXBUF are empty.

Bit 1: The slave transmit-control bit STC selects if the STE pin is used
for master and slave mode:
STC = 0: The four-pin mode of SPI is selected. The STE

signal is used by the master to avoid bus conflicts,
or is used in slave mode to control transmit and
receive enable.

STC = 1: The three-pin SPI mode is selected. STE is not
used in master or slave mode.

Bit 2: Unused

Bit 3: Unused

Bits 4, 5: Source select 0 and 1
The source-select bits define which clock source is used for
baud-rate generation only when master mode is selected:
SSEL1,SSEL0 0 External clock UCLK selected

1 Auxiliary clock ACLK selected
2, 3 SMCLK

In master mode (MM = 1), an external clock at UCLK cannot be
selected since the master supplies the UCLK signal for any
slave. In slave mode, bits SSEL1 and SSEL0 are not relevant.
The external clock UCLK is always used.

Bits 6, 7: Clock polarity CKPL and clock phase CKPH
The CKPL bit controls the polarity of the SPICLK signal.
CKPL = 0: The inactive level is low; data is output with the

rising edge of UCLK; input data is latched with
the falling edge of UCLK.

CKPL = 1: The inactive level is high; data is output with the
falling edge of UCLK; input data is latched with
the rising edge of SPICLK.

The CKPH bit controls the polarity of the SPICLK signal as
shown in Figure 13–17.
CKPH = 0: Normal UCLK clocking scheme
CKPH = 1: UCLK is delayed by one half cycle

Control and Status Registers

13-18

Figure 13–17. USART Clock Phase and Polarity

1 2 3 4 5 6 7 8

*

*

Cycle#

UCLK

UCLK
UCLK

UCLK

SIMO/
SOMI
SIMO/
SOMI

Data to
TXBUF

Receive
Sample Points

CKPL
0
1
0
1

x

x

CKPH
0
0
1
1

0

1

MSB LSB

MSB LSB

*Previous Data Bit

When operating with the CKPH bit set, the USART (synchronous mode)
makes the first bit of data available after the transmit shift register is loaded and
before the first edge of the UCLK. In this mode, data is latched on the first edge
of UCLK and transmitted on the second edge.

13.5.3 Receive Control Register U0RCTL, U1RCTL

The receive control register, shown in Figure 13–18, controls the USART
hardware associated with the receiver operation and holds error conditions.

Figure 13–18. Receive Control Register U0RCTL, U1RCTL

7 0

U0RCTL, 072h
U1RCTL, 07Ah

Unused

rw–0

FE Undef. OE UnusedUndef. Undef. Undef.

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

Bit 0: Undefined, driven by USART hardware

Bit 1: Undefined, driven by USART hardware

Bit 2: Unused

Bit 3: Unused

Bit 4: Undefined, driven by USART hardware

Bit 5: The overrun-error-flag bit (OE) is set when a character is
transferred to UxRXBUF before the previous character is read.
The previous character is overwritten and lost. OE is reset by a
SWRST, a system reset, by reading the UxRXBUF, or by an
instruction.

Bit 6: Undefined, driven by USART hardware

Bit 7: Frame error. The FE bit is set when four-pin mode is selected
and a bus conflict stops an active master by applying a negative
transition signal to pin STE. FE is reset by a SWRST, a system
reset, by reading the UxRXBUF, or by an instruction.

Control and Status Registers

13-19USART Peripheral Interface, SPI Mode

13.5.4 Baud Rate Select and Modulation Control Registers

The baud-rate generator uses the content of baud-rate select registers UxBR1
and UxBR0, shown in Figure 13–19, to generate the serial-data-stream bit
timing. The smallest division factor is two.

Figure 13–19. USART Baud-Rate Select Register

27

7 0

26 25 24 23 22 21 20

rw

215

7 0

214 213 212 211 210 29 28

rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

U0BR0, 074h
U1BR0, 07Ch

U0BR1, 075h
U1BR1, 07Dh

Baud rate = BRCLK

UxBR� 1
n�

n

i
mi

 with UxBR= [UxBR1, UxBR0]

The maximum baud rate that can be selected for transmission in master mode
is half of the clock-input frequency of the baud-rate generator. In slave mode,
the rate is determined by the external clock applied to UCLK.

The modulation control register, shown in Figure 13–20, is not used for serial
synchronous communication. It is best kept in reset mode (bits m0 to m7 = 0).

Figure 13–20. USART Modulation Control Register

7 0

U0MCTL, 073h
U1MCTL, 07Bh

m3m7 m6 m5 m2m4 m1 m0

rw rw rw rw rw rw rw rw

13.5.5 Receive Data Buffer U0RXBUF, U1RXBUF

The receive data buffer (UxRXBUF), shown in Figure 13–21, contains
previous data from the receiver shift register. UxRXBUF is cleared with a
SWRST or a PUC signal. Reading UxRXBUF resets the receive-error bits and
the receive-interrupt flag URXIFG.

Figure 13–21. Receive Data Buffer U0RXBUF, U1RXBUF

27

7 0

26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

U0RXBUF, 076h
U1RXBUF, 07Eh

The MSB of the UxRXBUF is always reset in seven-bit-length mode.

Control and Status Registers

13-20

13.5.6 Transmit Data Buffer U0TXBUF, U1TXBUF

The transmit data buffer (UxTXBUF), shown in Figure 13–22, contains current
data for the transmitter to transmit.

Figure 13–22. Transmit Data Buffer U0TXBUF, U1TXBUF

27

7 0

26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

U0TXBUF, 077h
U1TXBUF, 07Fh

The UTXIFG bit indicates that UxTXBUF is ready to accept another character
for transmission. In master mode, the transmission is initialized by writing data
to UxTXBUF. The transmission of this data is started immediately if the
transmit shift register is empty.

When seven-bit character-length is used, the data moved into the transmit
buffer must be left-justified since the MSB is shifted out first.

14-1Comparator_A

Comparator_A

The Comparator_A peripheral module is used to compare analog signals to
support various forms of analog-to-digital conversion.

The Comparator_A module includes:

� Comparator with on/off capability and no input hysteresis
� Internal analog voltage reference generator
� Internal reference levels available externally
� Input multiplexer to exchange the comparator terminals
� Software-selectable RC-filter at the comparator output
� One interrupt vector

The Comparator_A is implemented in MSP430x11x1, MSP430x12x,
MSP430x13x, and MSP430x14x devices.

Topic Page

14.1 Comparator_A Overview 14–2.

14.2 Comparator_A Description 14–3.

14.3 Comparator_A Control Registers 14–6.

14.4 Comparator_A in Applications 14–9.

Chapter 14

Comparator_A Overview

14-2

14.1 Comparator_A Overview

The primary function of the comparator module is to support precision A/D
slope-conversion applications, battery-voltage supervision, and monitoring of
external analog signals. The comparator is controlled via twelve control bits
in registers CACTL1 and CACTL2.

Figure 14–1. Schematic of Comparator_A

CA0

P2CA0

CA1

0

1

0

1

P2CA1

0

1

0

1

_
+

CAON

0

1

CAEX

0

1

CAF

Low Pass Filter

τ ≈ 2.0 µs

CAOUT to
Internal Module

Set CAIFG
Flag

CAOUT to
External Pin

0

CARSEL

1

0

2

1

3
VCAREF

0123

CAREF

0.5 x VCC

0.25 x VCC

CA1

CA0

0 V

0 V

0 V 0 V

VCC

1

0 V

0

CAON

VCC

1

0 V

0

The input and output pins of Comparator_A are often multiplexed with other
pin functions on the MSP430. Additionally, the internal connections to
Comparator_A can differ among MSP430 devices. The data sheet of a desired
device should always be consulted to determine the specific connection
implementations.

Comparator_A Description

14-3Comparator_A

14.2 Comparator_A Description

The comparator_A peripheral module is comprised of several major blocks.
These blocks are described in this section.

14.2.1 Input Analog Switches

The input analog switches connect or disconnect the comparator input
terminals to associated port pins using the P2CA0 and P2CA1 control bits.
Both terminal inputs can be controlled individually. P2CA0 and P2CA1 allow:

� Application of an external signal to the + and – terminals of the comparator,
or

� Routing of an internal reference voltage (if applied) to a comparator-input
terminal as an output on an associated port pin. In this way, the internal
reference voltage can be used to bias external circuitry.

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path. When a comparator terminal is not connected to an external
pin, it should be connected to an internal reference-voltage level.

Note: Comparator Input Connection

Ensure that the comparator input terminals are connected to signal, power,
or ground level. Otherwise, floating levels may cause unexpected interrupts
and current consumption may increase.

14.2.2 Input Multiplexer

Control bit CAEX controls the input multiplexer to select which input signals are
connected to the comparator’s + and – terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator offset.

14.2.3 The Comparator

The comparator compares the analog voltages at the + and – input terminals.
If the + terminal is more positive than the – terminal, the comparator output will
be high (note that the value of signal CAOUT also depends on the value of
CAEX). The comparator can be switched on or off using control bit CAON. The
comparator should be switched off when not in use to stop its current
consumption. When the comparator is switched off, the output is low (note that
the value of CAOUT still depends on the value of CAEX, even when the
comparator is off).

14.2.4 The Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an-chip RC-filter. The
filter is bypassed when CAF is reset.

Comparator_A Description

14-4

A comparator output will oscillate if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power-supply lines, and other parts of the system
are responsible for this behavior (see Figure 14–2). The comparator output
oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 14–2. RC-Filter Response at the Output of the Comparator

+ Terminal

– Terminal Comparator Inputs

Comparator Output
Unfiltered at CAOUT

Comparator Output
Filtered at CAOUT

14.2.5 The Voltage Reference Generator

The voltage reference generator is used to generate VCAREF. VCAREF can be
applied to either of the comparator input terminals. Control bits CAREF0 and
CAREF1 control the output of the voltage generator. Control bit CARSEL
selects the comparator terminal to which VCAREF is applied. If external signals
are applied to the comparator input terminals, the internal reference generator
should be shut off to reduce current consumption. The divider in the voltage
reference generator can generate a fraction of the device’s VCC, or a fixed
transistor-threshold voltage. This threshold voltage tolerance is specified in
the specific device’s data sheet.

Ratiometric measurement principles that compare unknown values, such as
resistive or capacitive sensors, with a known value such as a precision resistor
or capacitor, can use an internal reference and achieve accurate results
without an absolute VCC. VCC needs to be stable, but not necessarily known.
The accuracy of ratiometric measurements is determined by the accuracy of
the known resistor or capacitor value.

Absolute measurement principles require a stable VCC to ensure that the
voltage reference generated produces accurate reference-voltage levels.

Comparator_A Description

14-5Comparator_A

14.2.6 Comparator_A Interrupt Circuitry

One interrupt and one interrupt vector are associated with the Comparator_A
(see Figure 14–3). The interrupt flag CAIFG is set on either the rising or falling
edge of the comparator output. The interrupt edge-select bit, CAIES,
determines which edge of the output signal sets the CAIFG flag. The
interrupt-enable bit, CAIE, along with the general interrupt-enable bit (GIE)
control if the CAIFG bit generates a CPU interrupt. If both the CAIE and the
GIE bits are set, then the CAIFG flag will generate a CPU interrupt request.
The CAIFG flag is automatically reset when the CPU interrupt request is
serviced. The CAIFG, CAIES, and CAIE bits are all located in the CACTL1
register.

Figure 14–3. Comparator_A Interrupt System

0

1

CAF

CCI1B

CAOUT
Set
CAIFG

0

1

CAIES

Reset

VCC

CAIE

D Q
Set

IRQ, Interrupt Service Request

IRACC, Interrupt Request Accepted

τ ∼ 2 µs

POR

Comparator_A Control Registers

14-6

14.3 Comparator_A Control Registers

The Comparator_A module is configured with three module registers as
shown in Table 14–1. The module registers are mapped into the lower
peripheral file address range where all byte modules are located and should
be accessed with byte instructions (suffix B).

Table 14–1.Comparator_A Control Registers

Register
Short
Form Register Type Address

Initial
State

• C_A control register 1: CACTL1 Read/write 059h Reset

• C_A control register 2: CACTL2 Read/write 05Ah Reset

• C_A port dissipation reg: CAPD Read/write 05Bh Reset

14.3.1 Comparator_A, Control Register CACTL1

The control register CACTL1 is shown and described below.

CAEX

7

rw-(0)

CA
RSEL

rw-(0)

CA
REF1

rw-(0)

CA
REF0

rw-(0)

CAON

rw-(0)

CAIES

rw-(0)

CAIE

rw-(0)

CAIFG

0

rw-(0)

CACTL1
059h

CAIFG, bit0: The Comparator_A interrupt flag

CAIE, bit1: The Comparator_A interrupt enable

CAIES, bit2: The Comparator_A interrupt edge select bit

0: The rising edge of the comparator output sets the
Comparator_A interrupt flag CAIFG

1: The falling edge of the comparator output sets the
Comparator_A interrupt flag CAIFG

CAON, bit3: The comparator is switched on or off. When off, the
current consumption of the comparator is stopped. The
current consumption of the reference circuitry is enabled
or disabled independently.

0: The comparator is disabled, current consumption is
stopped and the output of the comparator is low.

1: The comparator is enabled and active.

CAREF, bit4,5: 0: Internal reference is switched off. An external
reference can be applied.

1: 0.25*Vcc reference is selected

2: 0.50*Vcc reference is selected

3: Diode reference is selected.
The diode reference varies with each individual
device, temperature and supply voltage. See device
data sheet.

Comparator_A Control Registers

14-7Comparator_A

CARSEL, bit6: The internal reference VCAREF, selected by CAREF bits,
is applied to the +terminal or –terminal.

0: Reference is selected to the +terminal (CAEX = 0) or
–terminal (CAEX = 1)

1: Reference is selected to the –terminal (CAEX = 0) or
+terminal (CAEX = 1)

CAEX, bit7: The inputs of the comparator are exchanged. This is
used to measure or compensate for the offset of the
comparator.

14.3.2 Comparator_A, Control Register CACTL2

The control register CACTL2 is shown and described below.

P2CA1 P2CA0
CACTL

2.7

7

rw-(0)

CACTL
2.6

rw-(0)

CACTL
2.5

rw-(0) rw-(0) rw-(0) rw-(0)

CAF

rw-(0)

CAOUT

0

r-(0)

CACTL2
05Ah

CACTL
2.4

CAOUT, bit0: The comparator output. Writing to this bit, for example
when writing a new register value, has no affect or
negative impact.

CAF, bit1: The comparator output filter is bypassed (CAF=0) or
switched into the output path (CAF=1).

P2CA0, bit2: Pin to CA0

0: The external, pin signal is not connected to the
Comparator_A

1: The external, pin signal is connected to the
Comparator_A

P2CA1, bit3: Pin to CA1

0: The external, pin signal is not connected to the
Comparator_A

1: The external, pin signal is connected to the
Comparator_A

Bits 4–7: See device data sheet for implementation.

14.3.3 Comparator_A, Port Disable Register CAPD

Typically, the comparator input and output functions are multiplexed with
digital I/O port pins to save pin count on a device. Also, slope A/D applications
often utilize multiple digital I/O ports (for charging and discharging) to provide
multiple channels of slope A/D conversion. In these multichannel applications,
a useful feature of the digital I/O pins is the ability to disable the input buffer.
Typically, all channels except the one being converted are disabled, providing
a high-impedance input and avoiding current consumption caused by
throughput current. (See section 14.4.1)

The typical digital I/O ports on MSP430 do not have the ability to disable the
input buffer. However, on devices with the Comparator_A, the capability has
been added and is controlled with the CAPD.x bits.

Comparator_A Control Registers

14-8

The control bits CAPD.0 to CAPD.7 are initially reset, enabling all the input
buffers for the associated port. The port input buffer is disabled if the according
CAPD.x bit is set. See device data sheet for port associations.

The ability to disable the input buffer for the device pin applies to up to eight
inputs of the associated digital I/O port (check device data sheet for
implementation details). For example, the x11x1 devices have CA1
multiplexed on pin P2.4 and CA0 multiplexed on pin P2.3, so the
Comparator_A is associated with port P2. On this device, all input buffers
associated with all P2 pins (P2.x) may have the capability to be disabled with
the CAPD register.

7

rw-(0) rw-(0) rw-(0) rw-(0)

CAPD.3

rw-(0)

CAPD.2

rw-(0)

CAPD.1

rw-(0)

CAPD.0

0

rw-(0)

CAPD
05Bh

CAPD.4CAPD.5CAPD.6CAPD.7

CAPD.x: 0: The input buffer for the pin enabled.

1: The input buffer for the pin is disabled.

Comparator_A in Applications

14-9Comparator_A

14.4 Comparator_A in Applications

The Comparator_A can be used to:

� Measure resistive elements
� Detect external voltage or current levels
� Measure external voltage and current sources
� Measure the voltage of a battery used in the system

14.4.1 Analog Signals at Digital Inputs

Typically, Comparator_A inputs are multiplexed with digital I/O pins. When
analog signals are applied to these digital CMOS gates, parasitic current can
flow from the positive terminal (VDD, VCC) to the negative terminal (VSS, GND).
See Figure 14–4. This parasitic current occurs if the input voltage is around
the transition level of the input gate.

Figure 14–4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

VCC

VSS

ICC

VOVI

0 VCC

VI

Figure 14–5. Transfer Characteristic and Power Dissipation in a CMOS Gate

VCC

VSS

ICCVOVI

0 VCC

VIVCC

ICC

CAPD.x = 1

MSP430 devices with the Comparator_A module have additional circuitry on
the associated digital I/O port pins to allow the input buffers to be disabled (see
Figure 14–5). The buffers are enabled or disabled with the CAPD.x bits (see
section 14.3.3). Note that the circuitry is added to all pins of the associated I/O
port, not just the pins for the Comparator_A inputs.

Disabling the input buffer for a specific pin will disable the parasitic current flow
and therefore reduce overall current consumption. It is important to disable the
buffer for any I/O pin that is not being actively driven if current consumption is
critical (see Figure 14–6).

Comparator_A in Applications

14-10

Figure 14–6. Application Example With One Active(Driving R3) and Three Passive Pins
With Applied Analog Signals

Control1 = 0

R1

Control2 = 0

R2

CAPD.x = 0

Control3 = 1

R3

CAPD.x = 0

Control4 = 0

R4

CAPD.x = 0 or 1

CAPD.x = 1
C

The specific implementation (which digital inputs/outputs can be controlled by
CAPD.x) varies with each MSP430 device configuration. Refer to the specific
device’s data sheet to see which I/O port is associated with Comparator_A.

Comparator_A in Applications

14-11Comparator_A

14.4.2 Comparator_A Used to Measure Resistive Elements

The Comparator_A can be used to measure resistive elements. For example,
temperature can be converted into digital data via a thermistor, by comparing
the thermistor’s discharge time to that of a reference resistor. See Figure 14–7.

Figure 14–7. Temperature Measurement Systems

_
+

0

1

CAF
e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

VCCVCC

R(ref)

R(meas)

P2CA0

P2CA1

VCAREF

CARSEL
0
2

1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

CAON

C

1

0

VCC0 V
10

CAON

VCC0 V
10

The resistive elements are compared using a capacitor charge-discharge
cycle, as shown in Figure 14–8. This is based on a ratiometric conversion
principle, as the ratio of two capacitor-discharge times is compared. Absolute
VCC and the actual capacitor value are not critical, as the ratiometric principle
cancels these values out. VCC and the capacitor value should simply remain
constant during the conversion.

Nmeas
Nref

�

–Rmeas� C� ln
Vref
VCC

–Rref� C� ln
Vref
VCC

Nmeas
Nref

�

Rmeas
Rref

Rmeas� Rref�
Nmeas

Nref

Comparator_A in Applications

14-12

Figure 14–8. Timing for Temperature Measurement Systems

VC
VCC

0.25 × VCC

Phase I:
Charge-Up

Phase II:
Discharge C

Phase III:
Charge-Up

tref

Phase IV:
Discharge C

tmeas

t

Rmeas
Rref

MSP430 resources used to calculate the temperature sensed by R(meas):

Digital I/O:

� Two digital outputs to charge and discharge the capacitor. Port pins are
set to provide a VCC output (charge a capacitor), reset to discharge a
capacitor, and switched to high-impedance (including correct state of
CAPD.x bit) when not in use. One output discharges the capacitor via
reference resistor R(ref), the other output discharges it via R(meas).

Comparator_A:

� The – terminal is connected to a reference level, for example 0.25 x VCC.

� The + terminal is connected to the positive terminal of the capacitor.

� CAOUT or CAIFG utilized to measure the discharge time.

� The output filter should be used to minimize multiple switching when the
voltages at the comparator inputs are close together.

If CAOUT is available as an input to a timer-capture register such as Timer_A,
the capacitor discharge time can be measured very precisely, without software
polling for a change of CAOUT, by using the timer capture function.

Rmeas � Rref�
Nmeas

Nref
Tmeas � ƒ �Rmeas�

Comparator_A in Applications

14-13Comparator_A

14.4.3 Measuring Two Independent Resistive Element Systems

It is possible to measure two independent systems with one comparator. The
input multiplexer, which is controlled via CAEX, allows the two independent
systems to be isolated. See Figure 14–9. An example could be if one
temperature sensor has a resistor range of 10 kΩ to 200 kΩ. The other sensor
is in the range of 1 kΩ to 1.5 kΩ. Two independent measurement paths are
used to optimize individual measurement performance. The conversion
principle is identical to the one described in the previous section.

Figure 14–9. Two Independent Temperature Measurement Systems

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

R1(ref)R1(meas)
P2CA0

P2CA1

VCAREF

CARSEL
0
2

1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

R2(ref)R2(meas)

C1

C2

1

0

CAEX CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

VCC VCC

VCC VCC

Comparator_A in Applications

14-14

In Figure 14–10, the active signal paths are shown when the upper
independent system is selected for conversion. This example uses the
0.25×VCC internal reference, and shows the software selectable RC-filter as
active.

Figure 14–10. Temperature Measurement Via Temperature Sensor R1(meas)

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

VCCVCC

R1(ref)R1(meas)
P2CA0

P2CA1

VCAREF

CARSEL
0
2

1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

VCCVCC

R2(ref)R2(meas)

C1

C2

1

0

CAEX CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Comparator_A in Applications

14-15Comparator_A

Figure 14–11 shows the active signal paths for the lower independent system.
This example uses the 0.25×VCC internal reference and shows the software
selectable RC-filter as active.

Figure 14–11.Temperature Measurement Via Temperature Sensor R2(meas)

1

0
0

1

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

1

0

1

0

CA0

CA1

0

1

VCCVCC

R1(ref)R1(meas)
P2CA0

P2CA1

VCAREF

CARSEL
0
2

1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

VCCVCC

R2(ref)R2(meas)

C1

C2

1

0

CAEX CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Comparator_A in Applications

14-16

14.4.4 Comparator_A Used to Detect a Current or Voltage Level

Comparator_A can be used to detect current or voltage levels if they are below
or above a reference level (shown in Figure 14–12). The reference level can
be selected from the internal reference-voltage generator, or by applying an
external reference level. Application software can poll the CAOUT bit for the
status of the comparator, or use the interrupt flag CAIFG to determine if the
level of the current or voltage source has crossed the comparator threshold.

In Figure 14–12, two external voltages are compared. Application software
can poll the CAOUT bit:

CAOUT = 0: V(signal < V(ref)

CAOUT = 1: V(signal > V(ref)

Figure 14–12. Detect a Voltage Level Using an External Reference Level

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

VCAREF

CARSEL
0
2
1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

V Signal
Voltage

V Reference
Voltage

1

0

CAEX CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Comparator_A in Applications

14-17Comparator_A

In Figure 14–13 current is transferred to an input voltage by I × R(sense). The
current limit is set for example to 0.25×VCC. The current is below the limit as
long as CAOUT is reset.

Figure 14–13. Detect a Current Level Using an Internal Reference Level

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

VCAREF

CARSEL
0

1
2

3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

VCC

R(sense)

Optional
R(hyst)

Px.y

1

0

CAEX
CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

14.4.5 Comparator_A Used to Measure a Current or Voltage Level

In addition to detecting levels, the comparator can be used to measure
currents or voltages. To measure a voltage, a known, stable voltage source is
used to charge up an RC combination. The time required to charge the
combination to a threshold value set by the voltage to be measured is then
used to calculate the voltage level (see Figure 14–16). VCAREF can be used
as the known stable voltage source if VCC in the user’s system meets the
required stability and accuracy.

A similar approach is used to measure a current. A known, stable voltage
source is again used to charge an RC combination to a threshold value. In this
case, the threshold voltage is created by passing the current to be measured
through a known resistance (see Figure 14–14).

Comparator_A in Applications

14-18

Figure 14–14. Measuring a Current Source

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

VCAREF

CARSEL
0
2
1
3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

VCC

R(sense)

VCC

I

R(meas)

1

0

CAEX
CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

The equation for the current I is:

I � 1
R(sense)

� VCC��
�

�
1– e

t 1�ln 0.5

t 1�t 2 �
�

�

Figure 14–15. Timing for Measuring a Current Source

Phase I:
Charge-Up

Phase II:
Charge-Up:

Determine Tau, RC

t1 t2

Vc

VCC

0.5 × VCC

I × R

Comparator_A in Applications

14-19Comparator_A

Figure 14–16. A/D Converter for Voltage Sources

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

VCAREF

CARSEL
0

1
2

3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

R2

VCC

1

0

V(meas)

R1

C

CAEX CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

The equation for the voltage Vmeas is:

V(meas) � R1� R2
R2

� VCC��
�

�
1–e

t 1�ln 0.5

t 1�t 2 �
�

�
Figure 14–17. A/D Converter for Voltage Sources, Conversion Timing

Phase I:
Charge-Up

Phase II:
Charge-Up:

Determine Tau, RC

t1 t2

Vc

VCC

0.5 × VCC

VR

Note: During phase I, control bit P2CA0 = 1 and CAREF = 0.
During phase II, control bit P2CA0 = 0, CARSEL = 0, and CAREF= 1.

Comparator_A in Applications

14-20

14.4.6 Measuring the Offset Voltage of Comparator_A

The input offset voltage of the comparator varies with each device and also
with temperature, supply voltage, and input voltage. If the input voltage is
stable (reference voltage), it will not influence the offset voltage significantly.
To increase the precision of voltage measurements, the comparator offset
voltage can be measured by the following steps. To simply compensate for the
offset without measuring it, see section 14.4.7

First, execute a conversion with CAEX = 0. VCA0 is applied to the + terminal
of the comparator, and Vref is applied to the – terminal of the comparator as
shown in Figure 14–18.

Figure 14–18. Measuring the Offset Voltage of the Comparator, CAEX = 0

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

CAEX

Vref

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

The Voffset in this configuration is in series with Vref as shown in Figure 14–19.

VCA0 = Vref + Voffset

Figure 14–19. Offset Voltage of the Comparator, CAEX = 0

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

CAEX

VoffsetVCA0 Vref

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Next, execute a conversion with CAEX = 1. VCA0 is applied to the – terminal
of the comparator, and Vref is applied to the + terminal of the comparator as
shown in Figure 14–20.

Comparator_A in Applications

14-21Comparator_A

Figure 14–20. Measuring the Offset Voltage of the Comparator, CAEX = 1

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0
CAEX

Vref

P2CA1

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

The Voffset in this configuration is in series with VCA0 as shown in Figure 14–21.

Vref = VCA0 + Voffset

VCA0 = Vref – Voffset

Figure 14–21. Offset Voltage of the Comparator, CAEX = 1

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

CAEX

Voffset
VCA0Vref

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Finally, calculate Vref from the below formulas.

N1 � –RVCA0� C� ln
Vref� Voffset

VCC
� fosc

N2 � –RVCA0� C� ln
Vref–Voffset

VCC
� fosc

This leads to:

Voffset � VCC� e
�N1�N2

2N1
�ln

Vref
VCC
�

–Vref

N = timer counts

Comparator_A in Applications

14-22

14.4.7 Compensating for the Offset Voltage of Comparator_A

Another way to improve the accuracy is to compensate for the effect of input
offset voltage without actually measuring it.

When CAEX = 0, the Voffset is in series with Vref:
VCA0 = Vref + Voffset

When CAEX = 1, the Voffset is in series with VCA0:
Vref = VCA0 + Voffset ⇒ VCA0 = Vref – Voffset

Adding the result of two conversions (one with each input configuration) and
dividing by two will cancel the effect of the offset voltage.

VCA0� Vref� Voffset
� VCA0� Vref� Voffset

2� VCA0� 2� Vref

�
N1� N2

2
� Conversion without offset

N = Timer count

14.4.8 Adding Hysteresis to Comparator_A

When the voltage level applied to the + terminal is close to the voltage level
at the – terminal, the output of the comparator may oscillate. This can cause
the following two situations:

� The current consumption increases, since the signal path driven by the
comparator output is constantly charged and discharged.

� The software receives constant requests for service either via interrupt
service requests, or after successful polling of CAOUT or CAIFG.

Comparator_A in Applications

14-23Comparator_A

Figure 14–22 shows how to add hysteresis to the comparator to prevent output
oscillation.

Figure 14–22. Use CAOUT at an External Pin to Add Hysteresis to the Reference Level

_
+

0

1

CAF

Set
CAIFG

τ ∼ 2 µs

0

1

0

1
0

1

0

1CA0

CA1

0

1

P2CA0

P2CA1

VCAREF

CARSEL
0

1
2

3

3 2 1 0

CAREF

0.5 × VCC

0.25 × VCC

V

Signal
Voltage

V

Reference
Voltage

1

0

CAEX

If Feedback is Possible

R1

R2

CAON

VCC0 V
10

CAON

VCC0 V
10

e.g.
Capture
Input of
Timer_A

CAOUT to
External Pin

Adding hysteresis can only be done if CAOUT is available externally. Refer to
the device’s data sheet to determine if CAOUT is available at an external pin.

The hysteresis can be calculated as follows:

V(hyst)��
R2

R1� R2
� VCC

14-24

15-1ADC12

ADC12

The ADC12 12-bit analog-to-digital converter is a high-speed, extremely
versatile analog-to-digital converter implemented on MSP430x13x and
MSP430x14x devices. This chapter discusses the ADC12 and how to use it.

Topic Page

15.1 Introduction 15-2.

15.2 ADC Description and Operation 15-4.

15.3 Analog Inputs and Multiplexer 15-6.

15.4 Conversion Memory 15-8.

15.5 Conversion Modes 15-9.

15.6 Conversion Clock and Conversion Speed 15-21.

15.7 Sampling 15-22.

15.8 ADC12 Control Registers 15-30.

Chapter 15

Introduction

15-2

15.1 Introduction

The ADC12 12-bit analog-to-digital converter (shown in Figure 15–1) has five
main functional blocks that can be individually configured and optimized:

� ADC core with sample-and-hold
� Conversion memory and configuration
� Reference voltage and configuration
� Conversion clock source select and control
� Sample timing and conversion control

Figure 15–1. ADC12 Schematic

a0

a1

a2

a3

a4

a5

a7

a6

Analog
Multiplexer

12 : 1

1.5V or 2.5V

VREF+

Sample

Hold

ACLK

MCLK

SMCLK

ADC12OSC

Internal

ADC12CLK

S/H

Divide by

1,2,3,4,5,6,7,8

Samplinga8

a9

a10

a11
12–bit S A R

ADC12DIV

REFON
2_5V

ISSH

SHP

ADC12CTLx.0..3

ADC12CTLx.4..6

T

SHT1

SHT0

ADC12ON

ADC12SSEL

VeREF+

VREF+

VREF–/ VeREF–

VR+VR–

12–bit A/D converter core

Conversion CTL

MSC

Ref_X

INCH= 0Ah

Ref_X

SAMPCON

Reference

on on

0140h

0142h

015Ch

015Eh

080h

081h

08Eh

08Fh

ADC12MEM0

ADC12MEM1

ADC12MEM14

ADC12MEM15

16 x 12–bit
ADC Memory

16 x 8–bit
ADC Memory Control

ADC12MEM10

ADC12MEM9

ADC12MEM8

ADC12MEM6

ADC12MEM7

ADC12MEM5

ADC12MEM11

ADC12MEM4

ADC12MEM3

ADC12MEM2

ADC12MEM12

ADC12MEM13

ADC12MCTL0

ADC12MCTL1

ADC12MCTL2

ADC12MCTL3

ADC12MCTL4

ADC12MCTL5

ADC12MCTL6

ADC12MCTL7

ADC12MCTL8

ADC12MCTL9

ADC12MCTL10

ADC12MCTL11

ADC12MCTL12

ADC12MCTL13

ADC12MCTL14

ADC12MCTL15

082h

083h

084h

085h

086h

088h

087h

089h

08Ah

08Bh

08Ch

08Dh

0144h

0146h

0148h

014Ah

014Ch

014Eh

0150h

0152h

0154h

0156h

0158h

015Ah

SHI

SHS

ENC

ADC12SC

Timer_A.OUT1

Timer_B.OUT0

Timer_B.OUT1

SYNC

AVSS

AVCC

AVSS

AVSS

AVCC

and

AVCC

Timer

Oscillator

The ADC12 can convert one of eight external analog inputs, or one of four
internal voltages. The four internal channels are used for temperature
measurement (via on-chip temperature diode), and for measurement of Vcc
(via Vcc/2) and the positive and negative references applied on VeREF+ and
VREF–/VeREF–.

The ADC12 can use its internal reference, or it can use external reference(s)
or a combination of internal and external reference-voltage levels.

Introduction

15-3ADC12

The ADC12 has versatile sample-and-hold circuitry giving the user many
options for control of the sample timing. The sample timing may be directly
controlled by software (via a control bit), or any one of three internal or external
signals (depending on device configuration – see Sampling section and check
the data sheet for details). Typically, the internal timing signals come from
other MSP430 timers such as Timer_A. Additionally, the sample timing may
be programmed as a multiple of the ADC12 conversion clock.

As with sample timing, the user has several choices for the ADC12 conversion
clock. The ADC12 conversion clock may be chosen from any available internal
MSP430 clock, or may be selected from a dedicated oscillator contained in the
ADC12 peripheral. Additionally, the chosen clock source may be divided by
any factor from 1 to 8.

The ADC12 has four operating modes. It can be configured to perform a single
conversion on a single channel, or multiple conversions on a single channel.
The ADC12 can also be configured to perform conversions on a sequence-of-
channels, running through the sequence once, or repeatedly. When
performing conversions on a sequence-of-channels, the sequence is
completely definable by the user. For example, a possible sequence-of-
channels could be a1–a3–a1–a6–a2, etc. In addition, each channel may be
individually configured for which reference(s) are to be used for the
conversion.

Conversion results are stored in 16 conversion-memory registers. Each of
these registers has its own configuration and control register allowing the user
to select the input channel and the reference(s) used for the conversion result
that is stored in that register.

Some key and unique features of the ADC12 are:

� 200-ksps maximum conversion rate

� 12-bit converter with ±1LSB differential nonlinearity (DNL) and ±1LSB
integral nonlinearity (INL)

� Built-in sample-and-hold with selectable sampling periods controlled by
software (via a control bit), a sampling timer, or by other MSP430 timers

� On-chip, dedicated RC oscillator – used as an option for sample-and-
conversion timing

� Integrated diode for temperature measurement

� Eight individually configurable channels for conversion of external signals

� Four internal channels for conversion of temperature, AVcc, and external
references

� On-chip reference voltages – 1.5 V or 2.5 V, selected by software

� Selectable internal or external sources for both positive and negative
reference-voltage levels (selectable for each channel independently)

� Selectable conversion clock source

ADC12 Description and Operation

15-4

� Versatile conversion modes including single-channel, repeated single-
channel, sequence, and repeated sequence.

� Sixteen 12-bit registers for storage of conversion results. Each register is
individually accessible by software and individually configurable to define
the channel and references for its conversion result.

� ADC core and reference voltage powered down separately

15.2 ADC12 Description and Operation

15.2.1 ADC Core

The ADC core (shown in Figure 15–2) converts the analog input to its 12-bit
representation and stores the results in the conversion memory. The core uses
two programmable/selectable voltage levels (VR+ and VR–) to define the upper
and lower limits of the conversion range, and to define the full-scale and
zero-scale readings. The digital output is full scale when the input signal is
equal to or higher than VR+, and zero when the input signal is equal to or lower
than VR–. The input channel and the reference voltage levels (VR+ and VR–)
are defined in the conversion-control memory. The conversion formula is:

NADC� 4095�
Vin – VR–
VR�– VR–

Figure 15–2. ADC Core, Input Multiplexer, and Sample-and-Hold

a0

a1

a2

a3

a4

a5

a7

a6
Analog

Multiplexer

12 : 1

Sample
and
Hold

ADC12CLK

S/H
a8

a9

a10

a11

ADC12MCTLx.0..3

12–bit A/D Converter Core

SAMPCON

ADC12ON
From Reference

S A R

To ADC12MEMx

Temperature

ADC12MCTLx.4..6

VR– VR+

VeREF+

VeREF–/
VREF–

AVCC/2

It is important to note that the 3 LSBs of the conversion are resolved resistively.
Therefore, when the 3 LSBs are being resolved during a conversion,
approximately 200 µA will be required from the reference. The user should
keep this in mind when choosing and decoupling an external reference. Refer
to the device data sheet for more details on ADC12 specifications.

ADC12 Description and Operation

15-5ADC12

Caution! ADC12 Turnon Time

When the ADC12 is turned on with the ADC12ON bit, the turnon
time noted in the data sheet (tADC12ON) must be observed before a
conversion is started. Otherwise, the results will be false.

15.2.2 Reference

The ADC12 A/D converter contains a built-in reference with two selectable
reference-voltage levels (1.5 V and 2.5 V). Either of these reference voltages
may be applied to VR+ of the A/D core and also may be available externally on
pin VREF+ (check device data sheet for availability of VREF+ pin). Additionally,
an external reference may be supplied for VR+ through pin VeREF+ (check data
sheet for availability of VeREF+ pin).

The reference-voltage level for VR– can be selected to be AVSS or may be
supplied externally through the VREF–/VeREF– pin (check device data sheet for
VREF–/VeREF– pin). If the VREF–/VeREF– pin is not available, then VR– is
connected to AVSS.

Configuration of the reference voltage(s) is done with the Sref bits (bits 4, 5,
and 6) in the ADC12MCTLx registers. Up to six combinations of positive and
negative reference voltages are supported as described in Table 15–1.

If only external references are used, the internal-reference generator can be
turned off with the REFON bit to conserve power.

Table 15–1.Reference Voltage Configurations

Sref Voltage at VR+ Voltage at VR–

0 AVCC AVSS

1 VREF+ (internal) AVSS

2,3 VeREF+ (external) AVSS

4 AVCC VREF–/ VeREF– (internal or external)

5 VREF+ (internal) VREF–/ VeREF– (internal or external)

6,7 VeREF+ (external) VREF–/ VeREF– (internal or external)

The voltage levels VR+ and VR– establish the upper and lower limits of the
analog inputs to produce a full-scale and zero-scale reading, respectively. The
values of VR+, VR–, and the analog input should not exceed the positive supply
or be lower than AVSS, consistent with the absolute maximum ratings specified
in the device data sheet. The digital output is full scale when the input signal
is equal to or higher than VR+, and zero when the input signal is equal to or
lower than VR–.

Analog Inputs and Multiplexer

15-6

Warning! Reference Voltage Settling Time

When the built-in reference is turned on with the VREFON bit, the
settling timing noted in the data sheet must be observed before
starting a conversion. Otherwise, the results will be false until the
reference settles. Once all internal and external references have
settled, no additional settling time is required when selecting or
changing the conversion range for each channel.

15.3 Analog Inputs and Multiplexer

15.3.1 Analog Multiplexer

The eight external analog input channels and four internal signals are selected
as the channel for conversion by the analog multiplexer. Channel selection is
made for each conversion-memory register with the corresponding
ADC12MCTLx register. The input multiplexer is a break-before-make type
(shown in Figure 15–3) to reduce input-to-input noise injection resulting from
channel switching. The input multiplexer is also a T-switch to minimize the
coupling between channels. Channels that are not selected are isolated from
the A/D and the intermediate node is connected to analog ground (AVSS) so
that the stray capacitance is grounded to help eliminate crosstalk.

Figure 15–3. Analog Multiplexer Channel

R ~ 100Ohm

ESD Protection

ADC12MCTLx.0–3

Input

Crosstalk can exist because there is always some parasitic coupling
capacitance across the switch and between switches. This can take several
forms, such as coupling from the input to the output of an off switch, or coupling
from an off analog input channel to the output of an adjacent on channel. For
high-accuracy conversions, crosstalk interference should be minimized by
shielding and other well-known printed-circuit board (PCB) layout techniques.

Analog Inputs and Multiplexer

15-7ADC12

15.3.2 Input Signal Considerations

During sampling, the analog input signal is applied to the internal capacitor
array of the A/D core. Therefore, the charge of the capacitor array is supplied
directly by the source. The capacitor array has to be charged completely
during the sampling period. Therefore the external source resistances,
dynamic impedances, and capacitance of the capacitor array must be
matched with the sampling period so the analog signal can settle to within
12-bit accuracy.

Additionally, source impedances also affect the accuracy of the converter. The
source signal can drop at the input of the device due to leakage current or
averaged dc-input currents (due to input switching currents). For a 12-bit
converter, the error in LSBs due to leakage current is:

Error(LSBs) = 4.096 x (µA of leakage current) × (kΩ of source
resistance)/(VR+ – VR–)

For example, a 50-nA leakage current with a 10-kΩ source resistance and a
1.5-V VREF gives 1.4 LSBs of error.

These errors due to source impedance also apply to the output impedance of
any external-voltage reference source applied to VeREF+. The output
impedance must be low enough to enable the transients to settle within
0.2/ADCLK and generate leakage current induced errors of <<1LSB.

See the Sampling section for more details on sample timing and sampling con-
siderations.

15.3.3 Using the Temperature Diode

To use the on-chip temperature diode, the user simply selects the analog input
channel to 10. Any other configuration is done as if an external channel was
selected, including reference selection, conversion-memory selection, etc.

Selecting the diode channel automatically turns on the on-chip reference
generator (see Figure 15–1) as a voltage source for the temperature diode.
However, it does not enable the VREF+ output or affect the reference selections
for the conversion; so, reference selections are the same as with any other
channel.

See the device data sheet for the temperature diode specifications.

Conversion Memory

15-8

15.4 Conversion Memory

A typical approach in single-channel converters uses an interrupt request to
signal the end of the conversion and requires the conversion data to be moved
to another location before another conversion can be performed. However, the
ADC12 incorporates 16 conversion-memory registers (ADC12MEMx, see
Figure 15–1) allowing the A/D converter to run multiple conversions without
software intervention. This increases the system performance by reducing
software overhead.

Additionally, each of the 16 conversion-memory registers has an associated
control register (ADC12MCTLx) allowing total flexibility for each conversion.
The memory-control registers allow the user to specify the channel and
reference(s) used for each individual conversion. All other control bits that
configure the other operating conditions of the ADC12, such as conversion
modes, sample and conversion control signal, ADC clock, and sample timing,
are located in control registers ADC12CTL0 and ADC12CTL1. Each
conversion-memory register is individually accessible by software in the
address range 0140h – 015Eh.

Using the conversion memory involves control bits in two places. First, the
CStartAdd bits located in ADC12CTL1 point to the conversion-memory
register to be used for single-channel conversions or the first
conversion-memory register to be used for a sequence. The conversion-start
address (CStartAdd) can be any value from 0h – 0Fh and points to
ADC12MEM0 – ADC12MEM15, respectively. Second, the end-of-sequence
(EOS) bit in each conversion-memory control register marks the end of an
automatic-conversion sequence.

The EOS bit, when set, defines the end of a conversion sequence. When
cleared, an internal conversion-memory pointer (not visible to software) is
incremented after the current conversion is completed and the conversion
result is stored in the conversion memory. The conversion-memory pointer is
then prepared to use the next conversion-memory register to store the results
of the next conversion. The internal conversion-memory pointer is
incremented with each conversion until a set EOS bit is encountered. Note that
defining the end of a sequence is independent from defining the mode of
operation (see the Conversion Modes section), and that the EOS bits are
ignored when using single-conversion mode or repeated conversion of a
single-channel mode.

Conversion sequences always use sequential conversion-memory registers,
can start with any conversion-memory register, and do not necessarily require
any EOS bit to be set. For example, if the CONSEQ bits define the mode of
operation to be conversion of a sequence (single or repeated), the CStartAdd
bits point to conversion-memory register 14, and no EOS bits are set for any
of the conversion-memory registers, then the conversion-memory registers
will be used in sequential order (14, 15, 0, 1, 2, ... , 14, 15, 0, 1, 2, … etc.) for
each consecutive conversion, and the sequence of conversions will continue
until stopped by software. This is useful, for example, in an application that
must take advantage of the buffering supplied by the conversion memory but
requires more than 16 repeated conversions of a single channel. In this
instance the user should set up each memory-control register identically,
specifying the same channel and reference(s) for each conversion, and all

Conversion Modes

15-9ADC12

EOS bits must be cleared. Once the converter is started, it will continue to run
until stopped by software.

15.5 Conversion Modes

The ADC12 has four conversion modes:

� Single-channel, single-conversion
� Single-channel, repeated-conversions
� Sequence-of-channels, single-sequence
� Sequence-of-channels, repeated-sequence

Each mode is summarized in Table 15–2 and described in detail in the follow-
ing sections.

Table 15–2.Conversion-Modes Summary

CONVERSION MODE CONSEQ OPERATION

Single channel 00 Single conversion from a selected channel

X = CStartAdd, points to the conversion start address

Result is in ADC12MEMx; interrupt flag is ADC12IFG.x

Channel (INCH) and reference voltage (Sref) are selected in ADC12MCTLx

Sequence-of-channels 01 A sequence-of-channels is converted

x = CStartAdd; points to the conversion start address

The last channel in a sequence (y) is marked with EOS=1 (ADC12MCTLx.7), all
other EOS bits in ADC12MCTLx, ADC12MCTL(x+1)..., ADC12MCTL(y–1) are
reset.

Result is in ADC12MEMx, ADC12MEM(x+1),…, ADC12MEMy

Interrupt flags are ADC12IFG.x, ADC12IFG.(x+1),…, ADC12IFG.y

More than one sequence is possible

Channel (INCH) and reference voltage (Sref) are selected in ADC12MCTLx

Repeat single channel 10 The conversion of one single channel is permanently repeated until repeat is off or
ENC is reset

x = CStartAdd; points to the conversion start address

Result is in ADC12MEMx; interrupt flag is ADC12IFG.x

Channel (INCH) and reference voltage (Sref) are selected in ADC12MCTLx

Repeat sequence-of-
channels

11 The conversion of a sequence-of-channels is permanently repeated until repeat is
off or ENC is reset

x = CStartAdd; points to the conversion start address

The last channel in a sequence (y) is marked with EOS=1 (ADC12MCTL.7), all
other EOS bits in ADC12MCTLx, ADC12MCTL(x+1),…, ADC12MCTL(y–1) are
reset

Result is in ADC12MEMx, ADC12MEMx+1,….; interrupt flag is ADC12IFG.x,
ADC12IFG.x+1,….

More than one sequence is possible

Channel (INCH) and reference voltage (Sref) are selected in ADC12MCTLx

Conversion Modes

15-10

15.5.1 Single-Channel, Single-Conversion Mode

The single-channel mode converts a single channel once. The channel to be
converted is selected by the INCH bits in the conversion-memory control regis-
ter (ADC12MCTLx) associated with the conversion-memory register pointed
to by the CStartAdd bits (located in ADC12CTL1x. The conversion range (VR+,
VR–) is configured in the same conversion-memory control register by the Sref
bits. The conversion result is stored in conversion-memory register
ADC12MEMx pointed to by the CStartAdd bits.

The conversion may be stopped immediately by resetting the enable-
conversion bit (ENC, located in ADC12CTL0), but the conversion results will
be unreliable, or the conversion may not be performed. This is illustrated in
Figure 15–4.

Figure 15–4. Stopping Conversion With ENC Bit

ENC

Sample Period Conversion Period

SAMPCON

Operational Mode

ENC is reset before conversion period is completed:
no conversion executed or unreliable conversion result.

Sample Period Conversion Period

ENC is reset after conversion period is completed:
conversion is executed regularly.

Sample-and-conversion (SAMPCOM) signal can be reset
and conversion started when appropriate. and conversion started when appropriate.

ENC and ADC12SC
may be set together

ENC and ADC12SC
may be set together

Sample-and-conversion (SAMPCOM) signal can be reset

ENC

SAMPCON

Operational Mode

ENC is reset before conversion period is completed:
no conversion executed or unreliable conversion result.

ENC is reset after conversion period is completed:
conversion is executed regularly.

Sample-and-conversion (SAMPCOM) signal can be reset
and conversion started when appropriate. and conversion started when appropriate.

Sample-and-conversion (SAMPCOM) signal can be reset

Sample Period Conversion Period Sample Period Conversion Period

When the conversion is complete and the results are written to the selected
conversion-memory register, the corresponding interrupt flag ADC12IFG.x is
set, and, if the appropriate interrupt enables are set, an interrupt request is
generated (see the ADC12 Interrupt Vector Register ADC12IV section).

When software is using the ADC10SC bit to initiate conversion, successive
conversions can be initiated by simply setting the ADC10SC bit (the ENC bit
can remain set or may be set at the same time as ADC10SC). However, when
any other trigger source (ADC10I1, ADC10I2, or ADC10I3) is being used to
start conversions, the ENC bit must be toggled between each conversion. All
additional incoming sample-input signals will be ignored until the ENC bit is
reset and set again.

The conversion mode may be changed after the conversion begins but before
it has completed, and the new mode will take effect after the current conversion
has completed. See also the Switching between Conversion Modes section.

An illustration of single-channel, single-conversion mode is shown in Figure
15–5.

Conversion Modes

15-11ADC12

Figure 15–5. Single-Channel, Single-Conversion Mode

ADC12
off

x = CStartAdd
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in

ADC12MCTLx

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
 ADC12SC =

SAMPCON =

SAMPCON = 1

Convert, use
12 x ADC12CLK

SAMPCON =

ENC = 0

ENC = 0†

< 12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

 †Conversion result is unpredictable

ENC = 0†

ADC12ON = 1

CONSEQ = 0

An example of the conversion-memory setup is shown in Figure 15–6 for
single-channel conversion. The example uses the following conditions:

� Single conversion of channel a4
� Internal reference voltage with VR+ at AVCC and with VR– at AVSS
� Conversion result to be stored in conversion-memory register

ADC12MEM1

This means that control bit CStartAdd in ADC12CTL0 is assigned a value of
1. The channel (INCH=4) and reference voltages (Sref=0) are selected via
ADC12MCTL1.

Conversion Modes

15-12

Figure 15–6. Example Conversion-Memory Setup

Select

0140h

0142h

015Ch

015Eh

12–bit SAR

ADC12MEM0

ADC12MEM14

ADC12MEM15

16 x 12–bit

ADC Memory

140h + 2 x CStartAdd 80h + CStartAdd

ADC12MEM2

0

0

conversion result
080h

081h

08Eh

08Fh

ADC12MCTL0

ADC12MCTL14

ADC12MCTL15

16 x 8–bit

ADC Memory Controls

ADC12MCTL2

0 0 1 0 0001

Multiplexer

E
O
S

VR+/VR–

15.5.2 Sequence-of-Channels Mode

The sequence-of-channels mode converts a sequence of channels. The
CStartAdd bits in ADC12CTL1 point to the first conversion-memory register
used for the sequence. The results of the remaining conversions in the
sequence are stored in sequential conversion-memory registers. For
example, if a sequence is three-conversions long and the CStartAdd bits point
to conversion-memory register 4, then when the sequence is started, the first
conversion result is stored in ADC12MEM4, the second result is stored in
ADC12MEM5, and the third result is stored in ADC12MEM6.

When performing sequences of conversions, the channels and references for
each conversion are individually configurable via the conversion-memory
control register associated with the each conversion-memory register used in
the sequence. For example, if a sequence of conversions uses ADC12MEM3
– ADC12MEM6, then the channel and reference(s) for each conversion are
individually configurable with ADC12MCTL3 – ADC12MCTL6.

The end of a sequence is marked by the end-of-sequence bit (EOS) in the last
conversion-memory control register used in the sequence. Each
conversion-memory control register contains an EOS bit. All EOS bits of the
conversion-memory control registers used in a sequence must be reset,
except for the last one in the sequence. For example, if a sequence starts with
ADC12MEM7 and ends with ADC12MEM12, then the EOS bit of registers
ADC12MCTL7 – ADC12MCTL11 must be reset and the EOS bit of
ADC12MCTL12 must be set. Conversions stop when the end of a sequence
is reached.

When software is using the ADC10SC bit to initiate a sequence, successive
sequences can be initiated by simply setting the ADC10SC bit (the ENC bit can
remain set or may be set at the same time as ADC10SC). However, when any
other trigger source (ADC10I1, ADC10I2, or ADC10I3) is being used to start
a sequence, the ENC bit must be toggled between each sequence. All
additional incoming sample-input signals will be ignored until the ENC bit is
reset and set again.

The conversion mode may be changed after the conversion begins but before
it has completed, and the new mode will take effect after the current sequence
has completed. See also the Switching between Conversion Modes section.

Conversion Modes

15-13ADC12

If the conversion mode is changed after the sequence begins but before it has
completed and the ENC bit is left high, the sequence completes normally, and
the new mode takes effect after the sequence completes, unless the new
mode is single-channel single-conversion. If the new mode is single-channel
single-conversion, the current sequence-of-channels stops proceeding when
no sample-and-conversion is active, or after an active sample-and-conversion
is completed. The original sequence may not be completed, but all completed
conversion results are valid. See also the Switching Between Conversion
Modes section.

If the conversion mode is changed after the sequence begins, but before it has
completed, and the ENC bit is toggled, then the original sequence completes
normally and the new mode takes effect and is started after the original
sequence completes – unless the new mode is single-channel
single-conversion. If the new mode is single-channel single-conversion, then
the original sequence stops when no sample-and-conversion is active, or after
an active sample-and-conversion is completed, or when the ENC bit is reset,
whichever comes first. Then, the single conversion begins when the ENC bit
is set again. See also the Switching Between Conversion Modes section.

Figure 15–7. ENC Does Not Effect Active Sequence

ENC

SAMPCON

ENC and ADC12SC
may be set together

ADC12SC reset
starts conversion

ADC12SC set
starts sampling

ADC12SC reset
starts conversion

Period of Sequences

ADC12SC set
starts sampling

ADC12SC reset
starts conversion

Next Period of Sequences

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Sample Conversion Sample Conversion Sample Conversion Sample Conversion Sample Conversion

Single Period
of Sequence

Single Period
of Sequence

Single Period
of Sequence

Single Period
of Sequence

ENC

First +SAMPCON with
ENC set start S&C

ADC12SC reset
starts conversion

ADC12SC set
starts sampling

ADC12SC reset
starts conversion

ADC12SC set
starts sampling

ADC12SC reset
starts conversion

SAMPCON

Period of Sequences Next Period of Sequences

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Single Conversion
Time

Sample Conversion Sample Conversion Sample Conversion Sample Conversion Sample Conversion

Single Period
of Sequence

Single Period
of Sequence

Single Period
of Sequence

Single Period
of Sequence

An active sequence may be stopped immediately by selecting single-channel
single-conversion mode (reset CONSEQ.1 bit) and then resetting the
enable-conversion bit ENC. The data in memory register ADC12MEMx is
unpredictable and the interrupt flag ADC12IFG.x may or may not be set. This
is generally not recommended but may be used as an emergency exit.

Each time a conversion is completed, the results are loaded into the
appropriate ADC12MEMx register and the corresponding interrupt flag

Conversion Modes

15-14

ADC12IFG.x is set to indicate completion of the conversion. Additionally, If the
appropriate interrupt-enable flags are set, an interrupt request is generated
(see the ADC12 Interrupt Vector Register ADC12IV section).

An illustration of sequence of channels mode is shown in Figure 15–8.

Figure 15–8. Sequence-of-Channels Mode

ADC12
off

x = CStartAdd
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in

ADC12MCTLx

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC12SC =

SAMPCON =

SAMPCON = 1

Convert, Use
12 x ADC12CLK

SAMPCON =
< 12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQ = 1

MSC = 1
and

SHP = 1
and

EOS.x = 0

EOS.x = 1

If x < 15 then x = x + 1
else x = 0

If x < 15 then x = x + 1
else x = 0

(MSC = 0
or

SHP = 0)
and

EOS.x = 0

 x= pointer to conversion memory register (ADC12MEM0..ADC12MEM15) and
conversion memory control register (ADC12MCTL0..ADC12MCTL15)

Conversion Modes

15-15ADC12

An example showing a sequence of conversions is shown and flow-charted
in Figures 15–9 and 15–10. The example shows the sequence a0, a5, a7, a0,
a0, a3, and uses ADC12MEM6 for storing the first conversion results. The
setup of each conversion in the sequence is:

� a0, using reference voltages VR+ = AVCC and VR– = AVSS
� a5, using reference voltages VR+ at VREF+ and VR– = AVSS
� a7, using reference voltages VR+ at VREF+ and VR– = VeREF–/ VREF–
� a0, using reference voltages VR+ = AVCC and VR– = AVSS
� a0, using reference voltages VR+ = AVCC and VR– = AVSS
� a3, using reference voltages VR+ = AVCC and VR– = VeREF–/ VREF–

Figure 15–9. Sequence-of-Channels Mode Flow

Define basic conversion conditions
via control registers ADC12CTL0/1

x = 6

Define reference and channel
in control registers ADC12MCTL6x

ADC12MCTL6 = 0h
ADC12MCTL7 = 015h
ADC12MCTL8 = 057h

ADC12MCTL9 = 0h
ADC12MCTL10 = 0h

ADC12MCTL11 = 0C3h

Sample and convert channel
using ADC12MCTLx, and store

conversion result in ADC12MEMx

ENC 0 → 1

Yes

No

EOS in ADC12MCTLx = 1

Yes

No

Stop conversion sequence

x = x + 1

Sample Conversion

SAMPCON

(CStartAdd = 6)

Conversion Modes

15-16

Figure 15–10. Sequence-of-Channels Mode Example

0140h

0142h

015Ch

015Eh

12–bit S A R

ADC12MEM0

ADC12MEM14

ADC12MEM15

16 x 12–bit

ADC Memory

ADC12MCTL0

ADC12MCTL14

ADC12MCTL15

140h + 2 x CStartAdd 80h + CStartAdd

ADC12MCTL2

0

ADC12MEM1

0
0
0
0

0144h

0146h

0148h

014Ah

0158h

015Ah

ADC12MEM12

ADC12MEM13

0
0 Conversion result 1

0154h

0156h

0150h

0152h

ADC12MEM2

ADC12MEM3

ADC12MEM4

ADC12MEM5

ADC12MCTL12

ADC12MCTL13

0 0 0 1 1011
0 0 0 0 0000
0 0 0 0 0000
1 0 1 1 1010
1 0 1 0 1000
0 0 0 0 0000

ADC12MCTL1

ADC12MCTL5

ADC12MCTL4

ADC12MCTL3

014Ch

014Eh

Sequence

080h

081h

08Eh

08Fh

082h

083h

084h

085h

08Ch

08Dh

08Ah

08Bh

088h

089h

086h

087h

select

Multiplexer

E
O
S

Conversion result 1

Conversion result 1

Conversion result 1

Conversion result 1

Conversion result 1

VR+/VR–

15.5.3 Repeat-Single-Channel Mode

The repeat-single-channel mode is identical to the single-channel mode,
except that conversions are repeated on the chosen channel until stopped by
software. Each time a conversion is completed, the results are loaded into the
appropriate ADC12MEMx register and the corresponding interrupt flag
ADC12IFG.x is set to indicate completion of the conversion. Additionally, If the
appropriate interrupt-enable flags are set, an interrupt request is generated
(see the ADC12 Interrupt Vector Register ADC12IV section).

The conversion mode may be changed without first stopping the conversions.
When this is done, the new mode takes effect after the current conversion
completes (see also the Switching Between Conversion Modes section).

There are three ways to stop repeated conversions on a single channel:

1) Select single-channel mode instead of repeat-single-channel mode with
the CONSEQ bits. When this is done, the current conversion is completed
normally, the result is loaded into ADC12MEMx, and the associated
interrupt flag ADC12IFG.x is set.

2) Reset the ENC bit (ADC12CTL0.1) to stop conversions after the current
conversion is completed. Again, the result is loaded into ADC12MEMx
and the associated interrupt flag ADC12IFG.x is set.

3) Select single-channel mode instead of repeat-single-channel mode and
then reset the enable-conversion bit (ENC). When this is done, the current
conversion stops immediately. However, the data in memory register
ADC12MEMx is unpredictable and the associated interrupt flag
ADC12IFG.x may or may not be set. This method is generally not
recommended.

Conversion Modes

15-17ADC12

An illustration of repeat-single-channel mode is shown in Figure 15–11.

Figure 15–11.Repeat-Single-Channel Mode

ADC12
off

x = CStartAdd
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in

ADC12MCTLx

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
 ADC12SC =

SAMPCON =

SAMPCON = 1

Convert, Use
12 x ADC12CLK

SAMPCON =
< 12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQ = 2

MSC = 1
and

SHP = 1
and

ENC = 1

ENC = 0

(MSC = 0
or

SHP = 0)
and

ENC = 1

15.5.4 Repeat-Sequence-of-Channels Mode

The repeat-sequence-of-channel mode is identical to the sequence-of-
channel mode, except the sequence is repeated continuously until stopped by
software. Each time a conversion is completed, the results are loaded into the
appropriate ADC12MEMx register and the corresponding interrupt flag
ADC12IFG.x is set to indicate completion of the conversion. Additionally, If the
appropriate interrupt-enable flags are set, an interrupt request is generated
(see the ADC12 Interrupt Vector Register ADC12IV section).

The conversion mode may be changed without first stopping the conversions.
When this is done, the new mode takes effect after the current sequence

Conversion Modes

15-18

completes, except when the new mode is repeat-single-channel. In this case,
the sequence does not complete and the new mode takes effect immediately
(see also the Switching Between Conversion Modes section).

There are four ways to stop repeat-sequence-of-channels conversions:

1) Select sequence-of-channels mode (CONSEQ = 1) instead of repeated
sequence-of-channels mode (CONSEQ = 3). When this is done, the
current sequence of conversions is completed normally and no further
conversions take place. The conversion results are loaded into registers
ADC12MEMx and the corresponding interrupt flags ADC12IFG.x are set.

2) Reset ENC bit (ADC12CTL0.1). This stops the conversions after the
current sequence is completed. The conversion results of all conversions
in the sequence are stored in their appropriate ADC12MEMx register and
the associated interrupt flags ADC12IFG.x are set.

3) Select repeat-single-channel mode (CONSEQ = 2) instead of the repeat-
sequence-of-channel mode, and then select single-channel mode. The
current conversion is completed normally. The current conversion result
is loaded into register ADC12MEMx and the associated interrupt flags
ADC12IFG.x are set. The data for x is somewhere between CStartAdd
and the last register of the sequence.

4) Select single-channel mode (CONSEQ = 0) and reset enable-conversion
bit ENC. The current conversion is stopped immediately. The data in
memory register ADC12MEMx is unpredictable and the interrupt flag
ADC12IFG.x may or may not be set. This method is generally not
recommended.

Conversion Modes

15-19ADC12

An illustration of repeat-sequence-of-channels mode is shown in
Figure 15–12.

Figure 15–12. Repeat-Sequence-of-Channels Mode

ADC12
off

x = CStartAdd
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in

ADC12MCTLx

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
 ADC12SC =

SAMPCON =

SAMPCON = 1

Convert, Use
12 x ADC12CLK

SAMPCON =

< 12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQ = 3

MSC = 1
and

SHP = 1
and

(ENC = 1
or

EOS.x = 0)

ENC = 0
and

EOS.x = 1

(MSC = 0
or

SHP = 0)
and

(ENC = 1
or

EOS.x = 0)

If EOS.x = 1 then x = CStartAdd
else {if x < 15 then x = x + 1

else x = 0}

If EOS.x = 1 then x = CStartAdd
else {if x < 15 then x = x + 1

else x = 0}

 x= pointer to conversion memory register (ADC12MEM0..ADC12MEM15) and
conversion memory control register (ADC12MCTL0..ADC12MCTL15)

15.5.5 Switching Between Conversion Modes

Changing the mode of operation of the ADC12 while the converter is not
actively running is done simply by selecting the new mode of operation with
the CONSEQ bits. However, if the conversion mode is changed while the
converter is actively running, intermediate and undesirable modes can be
accidentally selected if both CONSEQ bits are changed in a single instruction.

Conversion Modes

15-20

Therefore, the following mode changes should be avoided while the converter
is running: 0 → 3, 1 → 2, 2 → 1, and 3 → 0.

The intermediate modes are caused by the asynchronous clocks for the CPU
and the ADC12. These intermediate modes can be avoided simply by
changing only one CONSEQ bit per instruction. For example, to change from
mode 0 to mode 3 while the converter is actively running, the following
instructions could be used:

BIS #CONSEQ_0,&ADC12CTL1 ; Example: 0 → 3, first
; step is 0 → 1.

BIS #CONSEQ_1,&ADC12CTL1 ; second step is 1 → 3. . .

Acceptable sequence modifications are: 0 → 1, 0 → 2, 1 → 0, 1 → 3, 2 → 0,
2 → 3, 3 → 1, and 3 → 2.

15.5.6 Power Down

The ADC12 incorporates two bits (ADC12ON and REFON) for power savings.
ADC12ON turns on the A/D core and REFON turns on the reference
generator. Each bit is individually controllable by software. The ADC12 is
turned off completely if both bits are reset. The ADC12 registers are not
affected by either of these bits and can be accessed and modified at any time
(see the ADC12 Control Registers section). Note, however, that ADC12ON
and REFON may only be modified if ENC=0.

Additionally, other ADC12 functions are automatically switched on and off as
needed—if possible—to realize additional power savings – even while the
ADC12 is running.

Caution! Powering Down the Converter

Do not power-down the converter or the reference generator while
the converter is active. Conversion results will be false.

It is possible to disable the reference generator and the ADC12 by
resetting bits ADC12ON and REFON before an active conversion or
sequence of conversions has completed. For example, if the
conversion mode is set to sequence-of-channels, and software
resets the ENC bit immediately after the sequence begins, the
ADC12ON and REFON bits can then be reset before the sequence
completes. If this occurs, the ADC12 will be powered down
immediately and the conversion results will be false.

Conversion Clock and Conversion Speed

15-21ADC12

Caution! Turning the ADC12 and Voltage Reference On or Off

The following must be considered when .
ADC12 turnon time: when the ADC12 is turned on with the
ADC12ON bit, the turnon time noted in the data sheet (tADC12ON)
must be observed before a conversion is started. Otherwise, the
results will be false.

Reference-voltage settling Time: When the built-in reference is
turned on with the VREFON bit, the settling timing noted in the data
sheet must be observed before a conversion is started. Otherwise,
the results will be false until the reference settles. Once all internal
and external references have settled, no additional settling time is
required when selecting or changing the conversion range for each
channel.

Settling time of external signals: external signals must be settled
before performing the first conversion after turning on the ADC12.
Otherwise, the conversion results will be false.

15.6 Conversion Clock and Conversion Speed

The conversion clock for the ADC12 (ADC12CLK shown in Figure 15–13) can
be selected from several sources and can be divided by any factor from 1 –
8. The ADC12CLK is used for the A/D conversion and to generate the
sampling period [if pulse-sampling mode is selected (SHP=1)]. Possible clock
sources are the internal oscillator (ADC12OSC), ACLK, MCLK, and SMCLK.

The internal oscillator generates the ADC12OSC signal and is in the 5-MHz
range (see device data sheet for specifications). The internal-oscillator
frequency will vary with individual devices, supply voltage, and temperature.
A stable clock source should be used for the conversion clock when accurate
conversion timing is required.

Figure 15–13. The Conversion Clock ADC12CLK

ACLK

MCLK

SMCLK

ADC12OSC

Internal
Oscillator

ADC12CLK
Divide by

1,2,3,4,5,6,7,8

ADC12DIVADC12ON

ADC12SSEL

12–bit A/D converter core

To Sample and Hold

VR– VR+

Sampling

15-22

The conversion starts with the falling edge of the sample signal SAMPCON
(see the Sampling section and Figure 15–14). Thirteen conversion clocks
(ADC12CLK) are required to complete a conversion. The conversion time is:

tconversion = 13 × (ADC12DIV/fADC12CLK)

Where ADC12DIV is any integer from 1 to 8. The ADC12CLK frequency must
not exceed the maximum and minimum frequencies specified in the data
sheet. Either violation may result in inaccurate conversion results.

Note: Availability of ADC12CLK During Conversion

Users must ensure that the clock chosen for ADC12CLK remains active until
the ADC12 can complete its operation. If the clock is removed while the
ADC12 is active, the operation can not be completed and the end-of-conver-
sion feedback to the program is not possible.

15.7 Sampling

The ADC12 sample-and-hold (S/H) circuitry (shown in Figure 15–14) is
flexible and configurable. The configuration is done by software via control bits
in the ADC12CTL0 and ADC12CTL1 registers. Configuration and operation
of the S/H circuitry is discussed in this section.

Figure 15–14. The Sample-and-Hold Function

ACLK

MCLK

SMCLK

ADC12OSC

Internal

Oscillator

ADC12CLK

S/H

Divide by

1,2,3,4,5,6,7,8

Sampling

Timer

ADC12DIV

ISSH
SHP

SHT1

SHT0

ADC12ON

ADC12SSEL

12–bit A/D Converter Core

Analog
Input
Signal

Conversion CTL

MSC

SAMPCON

SHI

SHS

ENC

ADC12SC

Timer_A.OUT1

Timer_B.OUT0

Timer_B.OUT1

SYNC

VR– VR+

Sample

Hold
and

12-Bit SAR

15.7.1 Sampling Operation

The sample-and-hold circuitry samples the analog signal when the sampling
signal SAMPCON (see Figure 15–14) is high. Conversion starts immediately
with the falling edge of SAMPCON. The sample-and-hold holds the signal
value when SAMPCON is low. Conversion takes 13 ADC12CLK cycles (see
Figure 15–15).

Sampling

15-23ADC12

Figure 15–15. Sample and Conversion, Basic Signal Timing

SAMPCON

Sample Conversion
and Hold

Start
Sampling

Stop Sampling
Start Conversion

Stop Conversion

The analog input signal must be valid and steady during the sampling period
in order to obtain an accurate conversion. It is also desirable not to have any
digital activity on any adjacent channels during the whole conversion period
to ensure that errors due to supply glitching, ground bounce, or crosstalk do
not corrupt the conversion results.

In addition, gains and losses in internal charge limit the hold time. The user
should ensure that the data sheet limits are not violated. Otherwise, the
sampled analog voltage may increase or decrease, resulting in false
conversion values.

15.7.2 Sample Signal Input Selection

The SAMPCON signal, which controls sample timing and the start of a
conversion, may be sourced by one of several signals. SAMPCON may be
sourced directly from one of the signals available at the input selection switch
(see Figure 15–16), further called sample-signal input, or from the integrated
sampling timer. When the sampling timer is used to source SAMPCON, the
sample-signal input is used to trigger the sampling timer.

The sample-signal input is selected by the SHS bits in ADC12CTL1. There are
four choices for the sample-signal input: ADC12SC, Timer_A.OUT1,
Timer_B.OUT0, and Timer_B.OUT1. The polarity of the sample-signal input
may be selected by the ISSH bit (see Figure 15–16). Also, the sample-signal
input is passed to the sampling timer or to the SAMPCON signal under control
of the ENC bit. This is discussed in detail further ahead.

ADC12SC is a control bit located in ADC12CTL0. Its value is set by software.
Depending on the selected sampling mode, this bit allows the software to
either start a sample-and-conversion (S/C) cycle (SHP=1), or to completely
control the sampling period (SHP=0).

The sample-signal input can be asynchronous to a conversion-enable, and is
synchronized and enabled by the ENC bit. Without synchronization, the first
sampling period after the ENC bit is set could be erroneous, depending on
where the ENC bit is set within the cycle of the input signal. In Figure 15–18,
for example, note that the ENC bit is set in the middle of a high pulse from the
sample-signal input. If the sample-input signal were simply passed directly to
the S/H, the first conversion of the example would be erroneous because the
first sampling period is too short.

Sampling

15-24

To prevent this problem, synchronization logic is implemented in the sample
input selection switch. This ensures that the first sample-and-conversion cycle
begins with the first rising edge of the sample-input signal applied after the
ENC bit is set. Additionally, the last sample-and-conversion begins with the
first rising edge of the sample-input signal after ENC has been reset.

Figure 15–16. Synchronized Sample and Conversion Signal With Enable Conversion

Enable Conversion
ENC

Sample-Signal

SHI

Sample and conversions
Trigger signal enabled

tssync

tENC

esynct

Input

15.7.3 Sampling Modes

The sampling circuitry has two modes of operation: pulse-sampling mode and
extended-sampling mode. In pulse-sampling mode, the sample-signal input
(selected by the SHS bits in ADC12CTL1) is used to trigger the internal
sampling timer, and the actual sample timing signal (SAMPCON) is then
generated by the sampling timer and is an integer multiple of the ADC12CLK
signal.

In extended-sampling mode, the sampling-signal input bypasses the sample
timer and is used to source SAMPCON directly, therefore completely
controlling the sample timing—asynchronously to ADC12CLK. Note that 13
ADC12CLK cycles are still required to complete one conversion.

15.7.3.1 Pulse-Sample Mode

In the pulse-sample mode, the sample-input signal, selected by the SHS bits,
triggers the sampling timer with its rising edge. The sampling timer then
generates the sample timing. The sampling time is programmable by the
SHT0 or SHT1 bits located in ADC12CTL0. When conversion-memory
registers ADC12MEM0 to ADC12MEM7 are selected to store the conversion
result(s), the SHT0 bits are used to program the sampling time. When
conversion-memory registers ADC12MEM8 to ADC12MEM15 are selected
for the conversion data, the SHT1 bits are used to program the sampling
timing. Therefore, it is possible to program two different sampling times for a
sequence of conversions by using both upper and lower conversion-memory
registers in the sequence. This feature is useful when different external-source
impedance conditions exist and require different sample timings.

Sampling

15-25ADC12

In pulse-sampling mode, sampling time is a multiple of the ADC12CLK x 4, and
is calculated by:

tsample = 4 x tADC12CLK x SHTx

SHTx is determined by bits SHT0 or SHT1 (see table in Control Registers
ADC12CTL0 and ADC12CTL1 section).

The sampling signal SAMPCON remains in the sampling state (high) for the
synchronization time tsync and the selected sample time tsample, as shown in
Figure 15–17. The conversion takes 13 × ADC12CLK cycles (tconvert). It is
important to note that after a sample-and-conversion cycle has been triggered
by the sample-input signal, additional triggers (via a rising edge on the
sample-input signal) will be missed/ignored until the prior sample-and-
conversion cycle is completed.

Figure 15–17. Conversion Timing, Pulse-Sample Mode

t sync

tsample tconvert

SAMPCON

ADC12CLK

An example of the pulse-sample mode configuration is shown in Figure 15–18.
The selected input signal source is Timer_B.OUT0. The timing for the example
is shown in Figure 15–19.

Figure 15–18. Pulse-Sample Mode Example Configuration

ACLK

MCLK

SMCLK

ADC12OSC

Internal

Oscillator

ADC12CLK

S/H

Divider by

1,2,3,4,5,6,7,8

Sampling

Timer

ADC12DIV

ISSH
SHP

SHT1

SHT0

ADC12ON

ADC12SSEL

12–bit A/D Converter Core
Analog

Conversion CTL

MSC

SAMPCON

SHI

SHS

ENC

ADC12SC

Timer_A.OUT1

Timer_B.OUT0

Timer_B.OUT1

SYNC

Sample
and
Hold

VR+VR–

Input
Signal

12-Bit SAR

Sampling

15-26

Figure 15–19. Pulse-Sample Mode Example Timing

Timer_B.OUT0

tsync

tsample tconvert

SAMPCON

ADC12CLK

Additional edges are ignored until after conversion completes

Next sync and sample

15.7.3.2 Extended-Sample Mode

In extended-sample mode, the input signal selected by the SHS bits is used
to control the sampling (SAMPCON signal) directly. The internal sampling
timer is not used. As shown in Figure 15–20, the sampling period is active while
SAMPCON is high. Hold mode is active when SAMPCON is low. The
conversion starts with the falling edge of SAMPCON after a synchronization
time tsync. The conversion takes 13 × ADC12CLK (tconvert).

Figure 15–20. Conversion Timing for Extended-Sample Mode

t sync

t convert

SAMPCON

ADC12CLK

Sample-Input Signal

samplet

The extended-sample mode allows total control of the sampling period and the
start of a conversion. The extended-sample mode is useful in applications that
require an extended sampling period to accommodate different input-source
impedances, or in applications where the maximum sampling period supplied
by the internal sampling timer is insufficient.

An example of the extended-sample-mode configuration is shown in
Figure 15–21. The selected input signal source is Timer_B.OUT0. The timing
for the example is shown in Figure 15–22.

Sampling

15-27ADC12

Figure 15–21. Extended-Sample Mode Example Configuration

ACLK

MCLK

SMCLK

ADC12OSC

Internal

Oscillator

ADC12CLK

S/H

Divide by

1,2,3,4,5,6,7,8

Sampling

Timer

ADC12DIV

ISSH
SHP

SHT1

SHT0

ADC12ON

ADC12SSEL

12–bit A/D converter core

Conversion CTL

SAMPCON

SHI

MSC

SHS

ENC

ADC12SC

Timer_A.OUT1

Timer_B.OUT0

Timer_B.OUT1

SYNC

Sample
and
Hold

VR– VR+

12-Bit SAR

Analog
Input
Signal

Figure 15–22. Extended-Sample Mode Example Timing

t

t tconvert

Timer_B.OUT0

sample

sync

ADC12CLK

15.7.4 Using the MSC Bit

The multiple-sample-and-conversion (MSC) control bit is not used if the
sample signal SAMPCON is generated without the sampling timer. However,
when the sampling timer is used to generate the SAMPCON signal and the
operating mode is other than single-channel single-conversion (CONSEQ >
0), the MSC bit can be used to configure the converter to perform the
successive conversions automatically and as quickly as possible.

If MSC = 0, then a rising edge of the SHI signal is required to trigger each
sample-and-conversion, regardless of what mode the converter is in. When
MSC = 1 and CONSEQ > 0, the first rising edge of the SHI signal triggers the
first conversion, but successive conversions are triggered automatically as
soon as the prior conversion is completed. Additional rising edges on SHI are
ignored until the sequence is completed or until the ENC bit is toggled
(depending on mode). The function of the ENC bit is unchanged when using
the MSC bit. See Figures 15–23 and 15–24.

Sampling

15-28

Figure 15–23. Use of MSC Bit With Nonrepeated Modes

ADC12CLK

Sampling
Timer

SHP

SHT0
SHT1

SAMPCON

SHI

SHI

Single channel

ENC

MSC = 0

MSC = 0
Sequence of
Channel

MSC = 1
Sequence of
Channel

MSC = 1Single channelSAMPCON

SAMPCON

SAMPCON

S/C

Conversion Period
Sample Period

S/C S/C S/C S/C

1 2 3 4

1 2 3 4

S/C S/C S/CS/C

S/C S/C S/C S/C

1 2 3 4

S/C S/C

SAMPCON

Figure 15–24. Use of MSC Bit With Repeated Modes

ADC12CLK

Sampling
Timer

SHP

SHT0
SHT1

SAMPCON

SHI

SHI

Repeat Sequence

ENC

MSC = 0

MSC = 1

MSC = 0
Repeat Single

MSC = 1

1

0

S/C

S/C

Conversion Period
Sample Period

S/C

S/CS/CS/C

S/CS/CS/C

S/CS/CS/C S/CS/CS/C S/CS/C S/C

Repeat Single

Repeat Sequence

SAMPCON

SAMPCON

S/C

S/C S/C S/C

1 2 3 1 3 1

1 2 3

S/CS/CS/C

1 2 3

S/CS/CS/C

1 2 3

S/CS/CS/C

1 2 3

S/C

1

S/CS/CS/C

1 2 3

2

Channel

Channel

of Channels

of Channels

SAMPCON

Sampling

15-29ADC12

15.7.5 Sample Timing Considerations

The A/D converter uses the charge redistribution method. Thus, when the
inputs are internally switched to sample the input analog signal, the switching
action causes displacement currents to flow into and out of the analog inputs.
These current spikes or transients occur at the leading and falling edges of the
sample pulse, and usually decay and settle before causing any problems
because typically the external time constant is less than that presented by the
internal effective RC. Internally, the analog inputs see an effective maximum
nominal RC of a 30 pF (C-array) capacitor in series with a 2-kΩ resistor (Ron
of switches). However, if the external dynamic-source impedance is large,
then these transients may not settle within the allocated sampling time to
ensure 12 bits of accuracy.

It is imperative that the proper sample timing be used for accurate
conversions. The next section discusses how to calculate the sample timing.

15.7.5.1 Simplified Sample-Timing Analysis

Using the equivalent circuit shown in Figure 15–25, the time required to charge
the analog-input capacitance from 0 to VS within 1/2 LSB can be derived as
follows.

Figure 15–25. Equivalent Circuit

Rs ri
VS VC

MSP430

Ci

VI

VI = Input voltage at pin Ax
VS= External driving-source voltage
Rs = Source resistance (must be real at input frequency)
ri = Input resistance (MUX-on resistance)
Ci = Input capacitance
VC= Capacitance-charging voltage

The capacitance-charging voltage is given by:

VC � VS�1–EXP� –tc
Rt� Ci
�� (1)

Where:
Rt = Rs + Zi
tc = Cycle time

The input impedance Zi is ~1 kΩ at 3.0 V, and is higher (~ 2 kΩ) at 1.8 V. The
final voltage to 1/2 LSB is given by:

VC (1�2LSB) � VS–� VS
8192
� (2)

Equating equation 1 to equation 2 and solving for cycle time tc gives:

VS–� VS
8192
� � VS�1–EXP� –tc

Rt � Ci
�� (3)

ADC12 Control Registers

15-30

and the time to charge to 1/2 LSB (minimum sampling time) is:

tch(1/2 LSB) = Rt x Ci x In(8192)

Where:

In(8192) = 9.011

Therefore, with the values given, the time for the analog input signal to settle
is:

(4)tch(1/2 LSB) = (Rs + 1 kΩ) × Ci × 9.011

This time must be less than the sampling time.

If the pulse-sampling mode is used, the maximum ADC12CLK frequency is:

max[f(ADC12CLK)] � SHTx
tch(1�2LSB)

(5)

This frequency must not exceed the maximum ADC12CLK frequency
specified in the data sheet.

15.8 ADC12 Control Registers

Five control registers, sixteen conversion-memory registers, and sixteen
conversion-memory control registers are used to configure the ADC12:

Register Short Form Register Type Address Initial State

ADC control register 0 ADC12CTL0 Read/write 01A0h Reset with POR

ADC control register 1 ADC12CTL1 Read/write 01A2h Reset with POR

ADC interrupt flag register ADC12IFG Read/write 01A4h Reset with POR

ADC interrupt enable register ADC12IE Read/write 01A6h Reset with POR

ADC interrupt vector word ADC12IV Read 01A8h Reset with POR

ADC memory 0
 to
ADC memory 15

ADC12MEM0

ADC12MEM15
Read

0140h

015Eh
Unchanged

ADC memory control 0
 to
ADC memory control 15

ADC12MCTL0

ADC12MCTL15
Read

080h

08Fh
Reset with POR

Note: All registers may be accessed by any instruction subject to register-access restrictions.

ADC12 Control Registers

15-31ADC12

15.8.1 Control Registers ADC12CTL0 and ADC12CTL1

All control bits of ADC12CTLx are reset during POR. Most of the control bits
in registers ADC12CTL0, ADC12CTL1, and ADC12MCTLx can only be
modified if ENC is reset. These bits are marked . All other bits can

be modified at any time.

The control bits of control register ADC12CTL0 and ADC12CTL1 are:

01A0h

ADC12CTL0
7 015 8

ENCADC12
TOVIE

ADC12
OVIE

ADC12
SC

rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0)

SHT1 SHT0 2_5V REF
ON

MSC
ON

ADC12

ADC12SC bit0 Sample and convert. The ADC12SC bit can be used to control the
conversion with software if ENC is set. It is recommended to have ISSH=0.
If the sampling signal SAMPCON is generated by the sampling timer
(SHP=1), changing the ADC12SC bit from 0 to 1 starts the sample-and-
conversion operation. When the A/D conversion is complete (BUSY=0) the
ADC12SC bit is automatically reset.

If the sample signal is directly controlled by ADC12SC (SHP=0), then the
high level of the ADC12SC bit defines the sample time. The conversion
starts once it is reset.

All automatic-sequence functions (CONSEQ={1,2,3}) and multiple sample-
and-conversion functions (MSC=1) are executed normally. Therefore, when
using ADC12SC the software must ensure that the frequency of the timing
of the ADC12SC bit meets the applicable timing requirements.

NOTE: The start of a conversion by software (SHS=0, in ADC12CTL1) is
possible by setting both ENC and ADC12SC control bits within one
instruction.

ENC bit1 Enable conversion. The software (via ADC12SC) or external signals can
start a conversion only if the enable-conversion bit ENC is high. Most of the
control bits in ADC12CTL0 and ADC12CTL 1, and all bits in ADCMCTL.x
may be changed only if ENC is low.

0 : No conversion can be started. This is the initial state.
1 : The first sample and conversion starts with the first rising edge of the
SAMPCON signal. The selected operation proceeds as long as ENC is set.

CONSEQ=0, ADC12BUSY=1, ENC= 1→ 0:
In this mode, if ENC is reset, the current conversion is immediately stopped.
The conversion results are unpredictable.

CONSEQ≠0, ADC12BUSY=x, ENC= 1→ 0:
In these modes, if ENC is reset, the current conversion or sequence is
completed and the conversion results are valid. The conversion activities
are stopped after the current conversion or sequence is completed.

ADC12 Control Registers

15-32

ADC12TOVIE bit2 Conversion-time-overflow interrupt enable.
The timing overflow happens if another sample-and-conversion is
requested while the current conversion is not completed. This is
independent of the conversion modes selected by CONSEQ. If the timing
overflow vector is generated and the timing overflow interrupt enable flag
ADC12TOVIE and the general interrupt enable bit GIE are set, an interrupt
service is requested. There is no individual interrupt flag. See the ADC12
Interrupt Vector Register ADC12IV section for more information on ADC12
interrupts.

ADC12OVIE bit3 Overflow-interrupt enable. Individual enable for the overflow-interrupt
vector.
The overflow happens if a conversion result is written into an ADC memory
ADC12MEMx but the previous result was not read. An interrupt service is
requested if the overflow vector is generated, the overflow-interrupt-enable
flag ADC12OVIE is set, and the general-interrupt-enable bit GIE is set.
There is no individual interrupt flag. See the ADC12 Interrupt Vector
Register ADC12IV section for more information on ADC12 interrupts.

ADC12ON bit4 Turn on the 12-bit ADC core. Settling-time constraints must be met when the
ADC12 core is powered up.

0: Power consumption of the core is off. No conversion will be started.
1: ADC core is supplied with power. If no A/D conversion is needed,

ADC12ON can be reset to conserve power.

REFON bit5 Reference voltage ON.

0: The internal-reference voltage is switched off. No power is consumed
from the reference-voltage generator.

1: The internal-reference voltage is switched on. The reference-voltage
generator consumes power. When the reference generator is switched
on, the settling time of the reference voltage must be completed before
the first sampling and conversion is started.

2_5V bit6 Reference-voltage level.

0: The internal reference voltage is 1.5V, if REFON = 1.
1: The internal reference voltage is 2.5V, if REFON = 1.

MSC bit7 Multiple sample and conversion. Valid only when the sample timer is
selected to generate the SAMPCON signal (SHP=1) and the A/D mode is
chosen as repeat-single-channel, sequence-of-channel or repeat-
sequence-of-channels (CONSEQ≠0).

0: The sampling timer requires a rising edge of the SHI signal to trigger
each sample-and-conversion.

1: The first rising edge of the SHI signal triggers the sampling timer, but
further sample-and-conversion are performed automatically as soon as
the prior conversion is completed—without additional rising edges of
SHI. Additional rising edges of SHI are ignored until the sequence has
completed or the ENC bit has been toggled (depending on mode).

ADC12 Control Registers

15-33ADC12

SHT0 bits
8–11

Sample-and-hold Time0. These bits define the sample timing for
conversions whose results are stored in conversion-memory registers
ADC12MEM0 to ADC12MEM7.

The sample time is a multiple of the ADC12CLK × 4:

tsample = 4 × tADC12CLK × n

SHT0 0 1 2 3 4 5 6 7 8 9 10 11 12–15

n 1 2 4 8 16 24 32 48 64 96 128 192 256

SHT1 bits
12–15

Sample-and-hold Time1. These bits define the sample timing for
conversions whose results are stored in conversion-memory registers
ADC12MEM8 to ADC12MEM15.

The sample time is a multiple of the ADC12CLK × 4:

tsample = 4 × tADC12CLK × n

SHT1 0 1 2 3 4 5 6 7 8 9 10 11 12–15

n 1 2 4 8 16 24 32 48 64 96 128 192 256

rw –(0) rw –(0) rw –(0) rw –(0)

01A2h

ADC12CTL1

rw –(0) rw –(0) rw –(0) r –(0)rw –(0) rw –(0) rw –(0) rw –(0)

7 015 8

ADC12SSELADC12DIVCSStartAdd

rw –(0) rw –(0) rw –(0) rw –(0)

CONSEQSHS
ADC12

BUSYISSHSHP

ADC12BUSY bit0 The ADC12BUSY bit indicates an active sample or conversion operation. It
is used specifically when the conversion mode is single-channel-
single-conversion, because if the ENC bit is reset in this mode, the
conversion stops immediately and the results are invalid. Therefore, the
ADC12BUSY bit should be tested to verify that it is 0 before resetting the
ENC bit when in single-channel-single-conversion mode.

The busy bit is not useful in all other operating modes because resetting the
ENC bit does not immediately affect any other mode.

0: No operation is active.
1: A sample period, conversion or conversion sequence is active.

CONSEQ bits
1–2

The CONSEQ bits select the conversion mode. Repeat mode is on if the
CONSEQ.1 is set.

0: Single-channel-single-conversion mode. One single channel is
converted once.

1: Sequence-of-channels mode. A sequence of conversions is executed
once.

2: Repeat-single-channel mode. Conversions on a single channel are
repeated until CONSEQ is set to 0 or 1.

3: Repeat-sequence-of-channels. A sequence of conversions is repeated
until CONSEQ is set to 0 or 1.

See also section Conversion Modes for additional information.

ADC12 Control Registers

15-34

ADC12SSEL bits
3–4

Select the clock source for the converter core

0: ADC12 internal oscillator, ADC12OSC
1: ACLK
2: MCLK
3: SMCLK

ADC12DIV bits
5–7

Select the division rate for the clock source selected by ADC12SSEL bits.

0 to 7: Divide selected clock source by 1 to 8
The divider’s output signal name is ADC12CLK. Thirteen of these clocks are
required for a conversion.

ISSH bit8 Invert sample-input signal.

0: The sample-input signal is not inverted.
1: The sample-input signal is inverted.

SHP bit9 The SHP bit selects the source of the sampling signal (SAMPCON) to be
either the output of the sampling timer or the sample-input signal directly.

0: SAMPCOM signal is sourced directly from the sample-input signal.
1: SAMPCON signal is sourced from the sampling timer. The rising edge

of the sample-input signal triggers the sampling timer.

SHS bits
10–11

Source select for the sample-input signal.

0: Control bit ADC12SC is selected.
1: Timer_A.OUT1
2: Timer_B.OUT0
3: Timer_B.OUT1

CStartAdd bits
12–15

Conversion start address CStartAdd is used to define which ADC12
conversion-memory register (ADC12MEMx) is used for a single conversion
or for the first conversion in a sequence of conversions. The value of
CStartAdd is 0 to 0Fh, corresponding to ADC12MEM0 to ADC12MEM15.
Since there is one corresponding conversion-memory control register
(ADC12MCTLx) for each conversion-memory register (ADC12MEMx),
CStartAdd also points to the corresponding ADC12MCTLx register.

Warning: Modifying ADC Control Register During Active
Conversion

The enable conversion control bit (ENC) in the ADC12CTL0 register
protects most bits from modification during an active conversion.
However, some bits that are necessary for proper completion of
active conversions and interrupt enable bits can be modified
independently of ENC. The user must use caution when modifying
theses bits to ensure an active conversion is not corrupted, or to
not use corrupted data.

To avoid corrupting any active conversions, stop the conversion,
wait for the busy bit to be reset, reset the ENC bit, then modify the
control bits.

ADC12 Control Registers

15-35ADC12

15.8.2 Conversion-Memory Registers ADC12MEMx

There are sixteen conversion-memory registers ADC12MEMx as follows:

0

rw rwr0 r0 rw rw
0140h...015Eh

ADC12MEM

15 12 11

r0 r0 rw rw rw rwrw rw rw rw

MSB LSB0000

ADC12MEM0,
 to
ADC12MEM15

bits
0–15

Conversion results. The 12-bit conversion results are right-justified and
the four MSBs are always read as 0.

The ADC12OV interrupt flag will be set in time to indicate that a overflow
situation occurred. Software can detect it if it reads the conversion result
and then tests for overflow condition. The corresponding interrupt flag
is reset if ADC12MEMx is accessed.

Warning : Software Write to Register ADC12MEMx

Typically, software should not write to the conversion result
registers ADC12MEMX. If software writes to one of these registers
while the ADC12 is attempting to write to the same register, the data
in the register will be unpredictable. If software ensures that it is
writing to a conversion result register that is not being accessed by
the ADC12, then the write completes normally and the data is
written correctly. The associated interrupt flag is reset.

15.8.3 Control Registers ADC12MCTLx

Each conversion-memory register ADC12MEMx has its own control register
ADC12CTLx. The conversion-memory registers hold the conversion results,
and the control register for each conversion-memory register selects basic
conversion conditions such as selecting the analog channel, the reference
voltage sources for VR+ and VR–, and indicating the end of a sequence.

All control bits in ADC12CTLx are reset during POR (see Chapter 3 for POR
details). The control registers ADC12MCTL.x can be modified only if the
enable conversion control bit ENC is reset. Any instruction that writes to an
ADC12MCTL register while the ENC bit is set will have no effect.

ADC12 Control Registers

15-36

080h...08Fh

ADC12MCTLx
07

rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0)

EOS Sref, source of reference INCH, input channel a0 to a11

INCH, bits 0–3 The INCH (input channel) bits select one of eight external, or one of four internal
analog signals for conversion.

0–7: a0 to a7
8: VeREF+
9: VREF– /VeREF–
10: Temperature diode
11–15: (AVCC – AVSS) / 2

Note: Selecting channel 10 automatically turns on the on-chip reference
generator for a voltage source for the temperature diode. However, it
does not enable the VREF+ output or effect the reference selections for
the conversion.

Sref, bits4–6 The Sref bits select one of six reference voltage combinations used for
conversion. The conversion is done between the selected voltage range VR+
and VR–.

0: VR+ = AVCC and VR– = AVSS
1: VR+ = VREF+ and VR– = AVSS
2,3: VR+ = VeREF+ and VR– = AVSS
4: VR+ = AVCC and VR– = VREF–/ VeREF–
5: VR+ = VREF+ and VR– = VREF–/ VeREF–
6,7: VR+ = VeREF+ and VR– = VREF–/ VeREF–

EOS, bit7 The end-of-sequence bit, when set, indicates the last conversion in a sequence
of conversions.

Note: A sequence will roll over from ADC12MEM15/ADC12MCTL15 to
ADC12MEM0/ADC12MCTL0 if the EOS bit in ADC12MCTL15 is not set.

Note: If none of the EOS bits is set and a sequence-of-channels
(CONSEQ={1,3}) is selected, resetting the ENC bit will not stop the
sequence. To stop the sequence, first select a single-channel mode
(CONSEQ={0,2}) and then reset ENC. See also the ENC bit description.

ADC12 Control Registers

15-37ADC12

15.8.4 ADC12 Interrupt Flags ADC12IFG.x and Interrupt-Enable Registers
ADC12IEN.x

There are 16 ADC12IFG.x interrupt flags, 16 ADC12IE.x interrupt enable bits,
and one interrupt vector word. The interrupt flags and enable bits are
associated with the 16 ADC12MEMx registers.

All interrupt flags and interrupt-enable bits are reset during POR.

0

rw –(0) rw –(0) rw –(0) rw –(0)
0184h

ADC12IFG
15

rw –(0) rw –(0) rw –(0) rw –(0)rw –(0) rw –(0) rw –(0) rw –(0)

ADCADCADCADCADCADCADCADCADCADCADC

IFG.10

ADC

IFG.11 IFG.9 IFG.7IFG.8 IFG.5IFG.6 IFG.4 IFG.2IFG.3 IFG.0IFG.1

ADCADCADC

IFG.14

ADC

IFG.15 IFG.13 IFG.12

rw –(0) rw –(0) rw –(0) rw –(0)

ADC12IFG.x, bits 0–15 The ADC12IFG.x interrupt flag is set if a conversion-result register
ADC12MEMx is loaded with the result of a conversion. The range for x
is 0 to 15.

The interrupt flags are reset if their corresponding ADC12MEMx
conversion-result register is accessed. To enable correct handling of
overflow conditions, they are not reset by accessing the interrupt vector
word ADC12IV. The overflow condition exists if another conversion result
is written to ADC12MEMx and the corresponding ADC12IFG.x is not
reset.

0

rw –(0) rw –(0)rw –(0) rw –(0) rw –(0) rw –(0)
01A6h

ADC12IE
15

ADC

rw –(0) rw –(0) rw –(0) rw –(0) rw –(0) rw –(0)rw –(0) rw –(0) rw –(0) rw –(0)

ADCADCADCADCADCADCADCADCADCADC

IE.10

ADC

IE.11 IE.9 IE.7IE.8 IE.5IE.6 IE.4 IE.2IE.3 IE.0IE.1

ADCADCADC

IE.14

ADC

IE.15 IE.13 IE.12

ADC12IE.x, bits 0–15 The ADC12IE.x interrupt-enable bit enables or disables the interrupt-
request service generated if the corresponding interrupt flag ADC12IFG.x
is set. The range for x is 0 to 15.

15.8.5 ADC12 Interrupt Vector Register ADC12IV

The 12-bit ADC has one interrupt vector to assist the handling of the 18
possible interrupt flags. Each of the 18 interrupt flags is prioritized and a unique
vector word is generated according to the highest-pending interrupt. The
priorities and corresponding vector-word values are shown in Table 15–3.
Overflow flag ADC12OVIFG has the highest priority, followed by timing-
overflow flag ADC12TOVIFG, and then by the interrupt flags for each
conversion-memory register ADC12IFG.0 to ADC12IFG.15.

The highest-pending interrupt flag generates a number from 0 (no interrupt is
pending) to 36. This encoded number can be added to the program counter
to automatically enter the software routine for handling each specific interrupt
(see software example, section 15.8.5.1.

An interrupt request is immediately generated if an interrupt flag is pending
(ADC12IV≠0), if the corresponding interrupt enable bit (ADC12OVIE,
ADC12TOVIE, or ADC12IE.x) is set, and if the general interrupt enable bit GIE
is set. When an interrupt request is generated, the service is requested by the
highest-priority interrupt that is enabled.

ADC12 Control Registers

15-38

It is important to note that ADC12OVIFG and ADC12TOVIFG are reset
automatically when either is the highest pending interrupt and the ADC12IV
register is accessed. For example, if both are pending simultaneously,
ADC12OVIFG will be reset automatically with the first access of ADC12IV, and
ADC12TOVIFG will be reset automatically with the next access to the
ADC12IV (assuming ADC12OVIFG was not set again). However, flags
ADC12IFG.x must be reset by software or reset by accessing the
corresponding conversion-memory register ADC12MEMx.

Also note that the flags ADC12OVIFG and ADC12TOVIFG can not be ac-
cessed by software. They are visible only via the interrupt vector word
ADC12IV data.

Table 15–3.ADC12IV Interrupt-Vector Values

ADC Interrupt Flags ADC12IFG
ADC12TOV ADC12OV ADC12IV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADC12TOV ADC12OV ADC12IV

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x x x x x x x x x x x x x x x x x 1 2

x x x x x x x x x x x x x x x x 1 0 4

x x x x x x x x x x x x x x x 1 0 0 6

x x x x x x x x x x x x x x 1 0 0 0 8

: : : : : : : : : : : : : : : : : : :

x 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

Note: Writing to Read Only Register ADC12IV

When a write to vector word register ADC12IV occurs, the highest-pending
interrupt flag is reset. Therefore, the interrupt event is missed.

ADC12 Control Registers

15-39ADC12

15.8.5.1 ADC Interrupt Vector Register, Software Example

The following software example shows the use of vector word ADC12IV and
the associated software overhead. The numbers at the right margin show the
cycles required for every instruction. The example shows a basic interrupt
handler structure that can be adopted to individual application requirements.

The software overhead for the different interrupt sources, including interrupt
latency and return-from-interrupt cycles (but not the task handling itself), is:

� ADC12IFG.0 to ADC12IFG.14, ADC12OV 16 cycles

� ADC12IFG.15 14 cycles

; Interrupt handler for the 12-bit ADC.

; The flag, which is enabled and has the highest priority,
; determines the interrupt vector word and is reset by
; hardware after accessing (instruction
; ADD &TADC12IV,PC). Flags ADC12OV, ADC12TOV, and
; ADC12IFG.x are reset by hardware.

ADC_HND $; Interrupt latency 6

ADD &ADC12IV,PC ; Add offset to Jump table 3

RETI ; Vector 0: No interrupt 5

JMP ADC12OV ; Vector 2: ADC overflow 2

JMP ADC12TOV ; Vector 4: ADC timing overflow 2

JMP ADC12MOD0 ; Vector 6: ADC12MEM0 was loaded
; (ADC12IFG.0) 2.

JMP ADC12MOD1 ; Vector 8: ADC12MEM1 was loaded
; (ADC12IFG.1) 2.

:

:

JMP ADC12MOD13 ; Vector 34: ADC12MEM14 was loaded
; (ADC12IFG.14) 2

JMP ADC12MOD14 ; Vector 36: ADC12MEM15 was loaded
; (ADC12IFG.15) 2

;

; Module 15. Handler for ADC12IFG.15 starts here. Note a JMP
; instruction is not needed to get here because the PC is

; already here after the ADD&ADC12IV,PC instruction.

;

ADC12OV ... ; Vector 2: ADC12OV Flag

... ; First instruction to handle ADC12
; overflow condition

RETI 5

;

ADC12TOV ... ; Vector 4: ADC12OV Flag

... ; First instruction to handle ADC12 timing
; overflow condition

RETI 5

;

ADC12MOD2 ; Vector 10: ADC12MEM2 was loaded
; (ADC12IFG.2)

MOV &ADC12MEM2,R6; ADC12IFG2 is reset due to access
; of ADC memory

... ; Task starts here

ADC12 Control Registers

15-40

RETI ; Back to main program 5

;

ADC12MOD1 ; Vector 8: ADC12MEM1 was loaded
; (ADC12IFG.1)

ADD &ADC12MEM1,R6; ADC12IFG1 is reset due to access
; of ADC memory

... ; Task starts here

RETI ; Back to main program 5

; The Module 3 handler shows a way to look if any other

;interrupt is pending: 5 cycles have to be spent, but 9 cycles

; may be saved if another interrupt is pending

;

ADC12MOD0 ; Vector 6: ADC12MEM0 was loaded
; (ADC12IFG.0)

... ; First instruction to be executed x

... ; Task starts here

JMP ADC12_HND ; With this instruction the software
; does not leave the handler; it looks

; for pending ADC12 interrupts 2

;

.SECT ”VECTORS”,0FFF4h ; Interrupt Vectors

.WORD ADC12_HND ; Vector for 12-bit ADC interrupt
; flags and overflow

Note: Basic Clock System

If the CPU clock MCLK is turned off (CPUOff=1), then two or three additional
cycles need to be added for synchronous start of the CPU system. The delta
of one clock cycle is caused when clocks are asynchronous to the restart of
CPU clock MCLK.

A/D Grounding and Noise Considerations

15-41ADC12

15.9 A/D Grounding and Noise Considerations

As with any high-resolution converter, care and special attention must be paid
to the printed-circuit-board layout and the grounding scheme to eliminate
ground loops and any unwanted parasitic components/effects and noise.
Industry-standard grounding and layout techniques should be followed to
reduce these unwanted effects.

Ground Loops are formed when return current from the A/D flows through
paths that are common with other analog or digital circuitry. If care is not taken,
this current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. One way
to avoid ground loops is to use a star connection scheme for AVSS (shown in
Figure 15–26). This way the ground current or reference currents do not flow
through any common input leads, eliminating any error voltages.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. The ripple can become more dominant by reducing the value of the
conversion voltage range (VR+ – VR–), therefore reducing the value of the LSB
and the noise margin. Thus a clean, noise-free setup becomes even more
important to achieve the desired accuracy. Adding carefully placed bypass
capacitors returned to the respective ground planes can help in reducing ripple
in the supply current and minimizing these effects.

Figure 15–26. A/D Grounding and Noise Considerations

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

10 µF 0.1 µF

AVCC

10 µF 0.1 µF

DVCC

VREF
+
–

VeREF+

VREF+

VIN
+
–

A0. . . 7

AVSS

DVSS

A/D

15-42

16-1ADC10

ADC10

The ADC10 10-bit analog-to-digital converter is a high-speed, versatile ana-
log-to-digital converter implemented on the MSP430x11x2. This chapter dis-
cusses the ADC10 and how to use it.

Topic Page

16.1 Introduction 16-2.

16.2 ADC10 Description and Operation 16-4.

16.3 Analog Inputs and Multiplexer 16-6.

16.4 Conversion Modes 16-8.

16.5 Conversion Clock and Conversion Speed 16-17.

16.6 Sampling 16-18.

16.7 ADC10 Control Registers 16-22.

16.8 A/D Grounding and Noise Considerations 16-26.

Chapter 16

Introduction

16-2

16.1 Introduction

The ADC10 10-bit analog-to-digital converter (shown in Figure 16–1) has four
main functional blocks that can be individually configured and optimized:

� ADC core with sample-and-hold
� Reference voltage and configuration
� Conversion clock source select and control
� Sample timing and conversion control

Figure 16–1. ADC10 Schematic

a0

a1

a2

a3

a4

a5

a7

a6

Analog
Multiplexer

12 : 1

1.5V or 2.5V

VREF+

Sample

Hold

ACLK

ADC10OSC

Internal

S/H

Divide by

1,2,3,4,5,6,7,8

Sampling and Conversion

a8

a9

a10

a11

ADC10DIV

REFON
2_5V

ISSH

ADC10CTLx.0...3

ADC10CTLx.4..6

T

ADC10ON

VeREF+

VREF+

VREF–/ VeREF–

VR+VR–

MSC

Ref_X

INCH= 0Ah

Ref_X

SAMPCON

Reference

on on

SHI

SHS

ENC

ADC10SC

ADC10I1

ADC10I2

ADC10I3

SYNC

AVSS

AVCC

AVSS

AVSS

AVCC

and

AVCC

Control

Convert

ADC10MEN01AAh

ADC10SSEL

ADC10CLK

10-bit A/D Converter Core

10-bit SAR

MCLK
SMCLK

Oscillator

The ADC10 can convert one of eight external analog inputs, or one of four
internal voltages. The four internal channels are used to measure temperature
(via on-chip temperature diode), Vcc (via Vcc/2), and the positive and negative
references applied on VeREF+ and VREF–/VeREF–.

The ADC10 can use its internal reference, or it can use external reference(s)
or a combination of internal and external reference-voltage levels.

The ADC10 has versatile sample-and-hold circuitry. One sample takes four
ADC10CLKs and can be triggered by software (ADC10SC) or by any one of
the three signals ADC10I1, ADC10I2, or ADC10I3. Typically, the internal
timing signals come from other MSP430 timers such as Timer_A.

Introduction

16-3ADC10

As with sample timing, users have several choices for the ADC10 conversion
clock. The ADC10 conversion clock may use ACLK, MCLK, or SMCLK, or may
be selected from a dedicated oscillator contained in the ADC10 peripheral.
Also, the chosen clock source may be divided by any factor from 1 to 8.

The ADC10 has four operating modes. It can be configured to perform a single
conversion on a single channel, or multiple conversions on a single channel.
The ADC10 can also be configured to perform conversions on a sequence-of-
channels, running through the sequence once, or repeatedly.

The conversion result is stored in register ADC10MEM.

Some key and unique features of the ADC10 are:

� 200-ksps maximum conversion rate

� 10-bit converter with ±1LSB differential nonlinearity (DNL) and ±1LSB
integral nonlinearity (INL)

� Built-in sample-and-hold

� On-chip, dedicated RC oscillator

� Integrated sensor for temperature measurement

� Ten analog inputs (two shared with external reference input)

� Four internal channels for conversion of temperature, AVcc, and external
references

� On-chip reference voltages: 1.5 V or 2.5 V, selected by software

� Selectable internal or external sources for both positive and negative
reference-voltage levels (selectable for each channel independently)

� Conversion clock source, ADC10OSC (RC-oscillator in ADC10), ACLK,
MCLK, or SMCLK

� Versatile conversion modes including single-channel, repeated single-
channel, sequence, and repeated sequence.

� One register (buffer) loaded after each conversion with the conversion
result.

� ADC core and reference voltage powered down separately

ADC10 Description and Operation

16-4

16.2 ADC10 Description and Operation

16.2.1 ADC Core

The ADC core (shown in Figure 16–2) converts the analog input to its 10-bit
representation and stores the results in the ADC10MEM register. The core
uses two programmable/selectable voltage levels (VR+ and VR–) to define the
upper and lower limits of the conversion range, and to define the full-scale and
zero-scale readings. The digital output is full scale when the input signal is
equal to or higher than VR+, and zero when the input signal is equal to or lower
than VR–. The input channel and the reference voltage levels (VR+ and VR–)
are defined in the conversion-control memory. The conversion formula is:

NADC� 1023�
Vin – VR–
VR�– VR–

Figure 16–2. ADC Core, Input Multiplexer, and Sample-and-Hold

a0

a1

a2

a3

a4

a5

a7

a6

Analog
Multiplexer

12 : 1

Sample
and
Hold

ADC10CLK

a8

a9

a10

a11

SAMPCON

ADC10ON

S A R
Temperature

VR– VR+

VeREF+

VeREF–/
VREF–

AVCC/2

Pass or
Autoscan

ADC10CTL1.12...15

ADC10CTL0.13...15

From Reference

S/H

10-Bit A/D Converter Core

ADC10MEM

Convert

Caution! ADC10 Turnon Time

When the ADC10 is turned on with the ADC10ON bit, the turnon
time noted in the data sheet (t(ADC10ON)) must be observed before
a conversion is started. Otherwise, the results will be false.

ADC10 Description and Operation

16-5ADC10

16.2.2 Reference

The ADC10 A/D converter contains a built-in reference with two selectable
reference-voltage levels (1.5 V and 2.5 V). Either of these reference voltages
may be applied to VR+ of the A/D core and also may be available externally on
pin VREF+ (check device data sheet for availability of VREF+ pin). Additionally,
an external reference may be supplied for VR+ through pin VeREF+ (check data
sheet for availability of VeREF+ pin).

The reference-voltage level for VR– can be selected to be AVSS or may be
supplied externally through the VREF–/VeREF– pin (check device data sheet for
VREF–/VeREF– pin). If the VREF–/VeREF– pin is not available, then VR– is
connected to AVSS.

Configuration of the reference voltage(s) is done with the Sref bits (bits 13, 14,
and 15) in the ADC10CTL0 register. Up to six combinations of positive and
negative reference voltages are supported as described in Table 16–1.

If only external references are used, the internal-reference generator can be
turned off with the REFON bit to conserve power.

Table 16–1.Reference Voltage Configurations

Sref Voltage at VR+ Voltage at VR–

0 AVCC AVSS

1 VREF+ (internal) AVSS

2,3 VeREF+ (external) AVSS

4 AVCC VREF–/ VeREF– (internal or external)

5 VREF+ (internal) VREF–/ VeREF– (internal or external)

6,7 VeREF+ (external) VREF–/ VeREF– (internal or external)

The voltage levels VR+ and VR– establish the upper and lower limits of the
analog inputs to produce a full-scale and zero-scale reading, respectively. The
values of VR+, VR–, and the analog input should not exceed the positive supply
or be lower than AVSS, consistent with the absolute maximum ratings specified
in the device data sheet. The digital output is full scale when the input signal
is equal to or higher than VR+, and zero when the input signal is equal to or
lower than VR–.

Warning! Reference Voltage Settling Time

When the built-in reference is turned on with the REFON bit, the
settling timing noted in the data sheet must be observed before
starting a conversion. Otherwise, the results will be false until the
reference settles. Once all internal and external references have
settled, no additional settling time is required when selecting or
changing the conversion range for each channel.

Analog Inputs and Multiplexer

16-6

16.3 Analog Inputs and Multiplexer

16.3.1 Analog Multiplexer

One of eight external analog input channels, two external analog inputs shared
with reference voltage inputs, and two internal signals can be selected by the
analog multiplexer as the channel for conversion. Channel selection is made
using INCH bits in register ADC10CTL1 for single channel conversions. When
in a sequence mode, the INCH bits select the first channel of the sequence.
The input multiplexer is a break-before-make type (shown in Figure 16–3) to
reduce input-to-input noise injection resulting from channel switching. The
input multiplexer is also a T-switch to minimize the coupling between channels.
Channels that are not selected are isolated from the A/D and the intermediate
node is connected to analog ground (AVSS) so that the stray capacitance is
grounded to help eliminate crosstalk.

Figure 16–3. Analog Multiplexer Channel

R ~ 100

ESD protection

ADC10CTL1.12..15

Input

Ω

Crosstalk can exist because there is always some parasitic coupling
capacitance across the switch and between switches. This can take several
forms, such as coupling from the input to the output of an off switch, or coupling
from an off analog input channel to the output of an adjacent on channel. For
high-accuracy conversions, crosstalk interference should be minimized by
shielding and other well-known printed-circuit board (PCB) layout techniques.

Analog Inputs and Multiplexer

16-7ADC10

16.3.2 Input Signal Considerations

During sampling, the analog input signal is applied to the internal capacitor
array of the A/D core. Therefore, the charge of the capacitor array is supplied
directly by the source. The capacitor array has to be charged completely
during the sampling period. Therefore the external source resistances,
dynamic impedances, and capacitance of the capacitor array must be
matched with the sampling period so the analog signal can settle to within
10-bit accuracy.

Additionally, source impedances also affect the accuracy of the converter. The
source signal can drop at the input of the device due to leakage current or
averaged dc-input currents (due to input switching currents). For a 10-bit
converter, the error in LSBs due to leakage current is:

Error(LSBs) = 1024 x (µA of leakage current) × (kΩ of source
resistance)/(VR+ – VR–)

For example, a 50-nA leakage current with a 10-kΩ source resistance and a
1.5-V VREF gives 1/3 LSBs of error.

These errors due to source impedance also apply to the output impedance of
any external-voltage reference source applied to VeREF+. The output
impedance must be low enough to enable the transients to settle within
0.2/ADC10CLK and generate leakage current induced errors of <<1 LSB.

See the Sampling section for more details on sample timing and sampling
considerations.

16.3.3 Using the Temperature Sensor

To use the on-chip temperature sensor, the user simply selects the analog
input channel to 10.

Selecting the diode channel automatically turns on the on-chip reference
generator (see Figure 16–1) as a voltage source for the temperature diode.
However, it does not enable the VREF+ output or affect the reference selections
for the conversion; so, reference selections are the same as with any other
channel.

The conversion can start after the required settling time. See the device data
sheet for the temperature sensor specifications.

Note: Offset Error of the Temperature Diode

The offset error of the temperature diode can be large (see the device data
sheet) and may require calibration to be used in an application.

Conversion Modes

16-8

16.4 Conversion Modes

The ADC10 has four conversion modes:

� Single-channel, single-conversion
� Single-channel, repeated-conversions
� Sequence-of-channels, single-sequence
� Sequence-of-channels, repeated-sequence

Each mode is summarized in Table 16–2 and described in detail in the follow-
ing sections.

Table 16–2.Conversion-Modes Summary

CONVERSION MODE CONSEQ OPERATION

Single channel 00 Single conversion on channel selected by INCH bits

Sequence-of-channels 01 A sequence-of-channels is converted. The sequence starts with the channel se-
lected by the INCH bits. Each channel from A(INCH) down to A0 is converted
once.

Repeat single channel 10 The conversion of channel A(INCH) is repeated until repeat is off or ENC is reset

Repeat sequence-of-
channels

11 The conversion of a sequence-of-channels is repeated until repeat is off or ENC is
reset. The sequence starts with A(INCH) and ends at A0.

16.4.1 Single-Channel, Single-Conversion Mode

The single-channel mode converts the channel selected by the INCH bits
once. When the conversion is complete, the conversion result is stored in
register ADC10MEM and the interrupt flag ADC10IFG is set. If the interrupt
enable is set, an interrupt request is generated.

The conversion may be stopped immediately by resetting the enable-
conversion bit (ENC, located in ADC10CTL0), but the conversion results will
be unreliable, or the conversion may not be performed.

When software is using the ADC10SC bit to initiate conversion, successive
conversions can be initiated by simply setting the ADC10SC bit (the ENC bit
can remain set or may be set at the same time as ADC10SC). However, when
any other trigger source (ADC10I1, ADC10I2, or ADC10I3) is being used to
start conversions, the ENC bit must be toggled between each conversion. All
additional incoming sample-input signals will be ignored until the ENC bit is
reset and set again.

The conversion mode may be changed after the conversion begins but before
it has completed, and the new mode will take effect after the current conversion
has completed. See also the Switching between Conversion Modes section.

Figure 16–4 illustrates the single-channel, single-conversion mode.

Conversion Modes

16-9ADC10

Figure 16–4. Single-Channel, Single-Conversion Mode

ADC10
Off

x = INCH
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

SAMPCON = 1

Convert, Use
10 x ADC10CLK

SAMPCON =

ENC = 0

ENC = 0†

< 10 x ADC10CLK

Conversion
Completed,

Result to
ADC10MEM,

ADC10IFG Is Set

1 x ADC10CLK

† Conversion result is unpredictable

ENC = 0†

ADC10ON = 1

CONSEQ = 0

16.4.2 Sequence-of-Channels Mode

The sequence-of-channels mode converts a sequence of channels beginning
with A(INCH) down to A0. The sequence stops after the conversion result of
A0 is loaded into ADC10MEM. Each conversion result is stored in register
ADC10MEM each time a conversion is completed. The interrupt flag
ADC10IFG is set each time register ADC10MEM is loaded. Additionally, If the
interrupt-enable flag ADC10IE is set, an interrupt request is generated.

Conversion Modes

16-10

When software is using the ADC10SC bit to initiate a sequence, successive
sequences can be initiated by simply setting the ADC10SC bit (the ENC bit can
remain set or may be set at the same time as ADC10SC). However, when any
other trigger source (ADC10I1, ADC10I2, or ADC10I3) is being used to start
a sequence, the ENC bit must be toggled between each sequence. All
additional incoming sample-input signals will be ignored until the ENC bit is
reset and set again.

The conversion mode may be changed after the conversion begins but before
it has completed, and the new mode will take effect after the current sequence
has completed. See also the Switching between Conversion Modes section.

If the conversion mode is changed after the sequence begins but before it has
completed and the ENC bit is left high, the sequence completes normally, and
the new mode takes effect after the sequence completes, unless the new
mode is single-channel single-conversion. If the new mode is single-channel
single-conversion, the current sequence-of-channels stops proceeding when
no sample-and-conversion is active, or after an active sample-and-conversion
is completed. The original sequence may not be completed, but all completed
conversion results are valid. See also the Switching Between Conversion
Modes section.

If the conversion mode is changed after the sequence begins but before it has
completed and the ENC bit is toggled, then the original sequence completes
normally and the new mode takes effect and is started after the original
sequence completes—unless the new mode is single-channel single-
conversion. If the new mode is single-channel single-conversion, then the
original sequence stops when no sample-and-conversion is active, or after an
active sample-and-conversion is completed, or when the ENC bit is reset,
whichever comes first. Then, the single conversion begins when the ENC bit
is set again. See also the Switching Between Conversion Modes section.

An active sequence may be stopped immediately by selecting single-channel
single-conversion mode (reset CONSEQ.1 bit) and then resetting the
enable-conversion bit ENC. The data in register ADC10MEM is unpredictable
and the interrupt flag ADC10IFG may or may not be set. This is generally not
recommended but may be used as an emergency exit.

Conversion Modes

16-11ADC10

Figure 16–5 illustrates the sequence-of-channels mode.

Figure 16–5. Sequence-of-Channels Mode

ADC10
Off

x = INCH
Wait for Enable

ENC =

Wait for Trigger

Sample,
Input Channel Ax,

Use 4 x ADC10CLK

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

Convert (Ax)
Use10 x ADC10CLK

SAMPCON =
< 10 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG Is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQ = 1

MSC = 1
and
x ≠ 0

x = 0

If x > 0 then x = x –1

MSC = 0
and
x ≠ 0

< 4 x ADC10CLK

If x > 0 then x = x –1

16.4.3 Repeat-Single-Channel Mode

The repeat-single-channel mode is identical to the single-channel mode,
except that conversions are repeated on the chosen channel until stopped by
software. The conversion result is stored in register ADC10MEM each time a
conversion is completed. The interrupt flag ADC10IFG is set each time
register ADC10MEM is loaded. Additionally, if the interrupt-enable flag
ADC10IE is set, an interrupt request is generated.

The conversion mode may be changed without first stopping the conversions.
When this is done, the new mode takes effect after the current conversion
completes (see also the Switching Between Conversion Modes section).

Conversion Modes

16-12

There are three ways to stop repeated conversions on a single channel:

1) Select single-channel mode instead of repeat-single-channel mode with
the CONSEQ bits. When this is done, the current conversion is completed
normally, the result is loaded into ADC10MEM, and interrupt flag
ADC10IFG is set.

2) Reset the ENC bit (ADC10CTL0.1) to stop conversions after the current
conversion is completed. Again, the result is loaded into ADC10MEM and
the associated interrupt flag ADC10IFG is set.

3) Select single-channel mode instead of repeat-single-channel mode and
then reset the enable-conversion bit (ENC). When this is done, the current
conversion stops immediately. However, the data in memory register
ADC10MEM is unpredictable and interrupt flag ADC10IFG may or may
not be set. This method is generally not recommended.

Conversion Modes

16-13ADC10

Figure 16–6 illustrates the repeat-single-channel mode.

Figure 16–6. Repeat-Single-Channel Mode

ADC10
Off

x = INCH
Wait for Enable

ENC =

Wait for Trigger

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

< 4 × ADC10CLK

Convert, Use
10 x ADC10CLK

< 10 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG Is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQ = 2

MSC = 1
and

ENC = 1

ENC = 0

MSC = 0
and

ENC = 1

Sample,
Input Channel Ax,

Use 4 x ADC10CLK

16.4.4 Repeat-Sequence-of-Channels Mode

The repeat-sequence-of-channels mode is identical to the sequence-of-
channels mode, except the sequence is repeated continuously until stopped
by software. Each time a conversion is completed, the results are loaded into
register ADC10MEM and interrupt flag ADC10IFG is set. Additionally, If the
interrupt-enable flag ADC10IE is set, an interrupt request is generated.

Conversion Modes

16-14

The conversion mode may be changed without first stopping the conversions.
When this is done, the new mode takes effect after the current sequence
completes, except when the new mode is repeat-single-channel. In this case,
the sequence does not complete and the new mode takes effect immediately
(see also the Switching Between Conversion Modes section).

There are four ways to stop repeat-sequence-of-channels conversions:

1) Select sequence-of-channels mode (CONSEQ = 1) instead of repeated
sequence-of-channels mode (CONSEQ = 3). When this is done, the
current sequence of conversions is completed normally and no further
conversions take place. The conversion result is loaded into register
ADC10MEM and interrupt flag ADC10IFG is set.

2) Reset bit ENC (ADC10CTL0.1). This stops the conversions after the
current sequence is completed. The conversion result is stored in register
ADC10MEM and interrupt flag ADC10IFG is set.

3) Select repeat-single-channel mode (CONSEQ = 2) instead of the repeat-
sequence-of-channel mode, and then select single-channel mode. The
current conversion is completed normally. The current conversion result
is loaded into register ADC10MEM and interrupt flag ADC10IFG is set.

4) Select single-channel mode (CONSEQ = 0) and reset enable-conversion
bit ENC. The current conversion is stopped immediately. The data in
memory register ADC10MEM is unpredictable and interrupt flag
ADC10IFG may or may not be set. This method is generally not
recommended.

Conversion Modes

16-15ADC10

Figure 16–7 illustrates the repeat-sequence-of-channels mode.

Figure 16–7. Repeat-Sequence-of-Channels Mode

ADC10
Off

x = INCH
Wait for Enable

ENC =

Wait for Trigger

Sample
Input Channel Ax,

Use 4 x ADC10CLK

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SHI =

Convert, Use
10 x ADC10CLK

< 10 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG Is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQ = 3

MSC = 1
and

(ENC = 1
or

x ≠ 0)

ENC = 0
and
x = 0MSC = 0

and
(ENC = 1

or
x ≠ 0)

If x = 0 then x = INCH
else x = x –1

< 4 x ADC10CLK

If x = 0 then x = INCH
else x = x –1

16.4.5 Switching Between Conversion Modes

Changing the mode of operation of the ADC10 while the converter is not
actively running is done simply by selecting the new mode of operation with
the CONSEQ bits. However, if the conversion mode is changed while the
converter is actively running, intermediate and undesirable modes can be
accidentally selected if both CONSEQ bits are changed in a single instruction.
Therefore, the following mode changes should be avoided while the converter
is running: 0 → 3, 1 → 2, 2 → 1, and 3 → 0.

Conversion Modes

16-16

The intermediate modes are caused by the asynchronous clocks for the CPU
and the ADC10. These intermediate modes can be avoided simply by
changing only one CONSEQ bit per instruction. For example, to change from
mode 0 to mode 3 while the converter is actively running, the following
instructions could be used:

BIS #CONSEQ_0,&ADC10CTL1 ; Example: 0 → 3, first
; step is 0 → 1.

BIS #CONSEQ_1,&ADC10CTL1 ; second step is 1 → 3. . .

Acceptable sequence modifications are: 0 → 1, 0 → 2, 1 → 0, 1 → 3, 2 → 0,
2 → 3, 3 → 1, and 3 → 2.

16.4.6 Power Down

The ADC10 incorporates two bits (ADC10ON and REFON) for power savings.
ADC10ON turns on the A/D core and REFON turns on the reference
generator. Each bit is individually controllable by software. The ADC10 is
turned off completely if both bits are reset. Register ADC10MEM is not
affected by either of these bits and can be accessed and modified at any time
(see the ADC10 Control Registers section). Note, however, that ADC10ON
and REFON may only be modified if ENC=0.

Additionally, other ADC10 functions are automatically switched on and off as
needed—if possible—to realize additional power savings—even while the
ADC10 is running.

Caution! Powering Down Active Converter

Do not power down the converter or the reference generator while
the converter is active. Conversion results will be false.

It is possible to disable the reference generator and the ADC10 by
resetting bits ADC10ON and REFON before an active conversion or
sequence of conversions has completed. For example, if the
conversion mode is set to sequence-of-channels, and software
resets the ENC bit immediately after the sequence begins, the
ADC10ON and REFON bits can then be reset before the sequence
completes. If this occurs, the ADC10 will be powered down
immediately and the conversion results will be false.

Conversion Clock and Conversion Speed

16-17ADC10

Caution! Considerations Before Turning the ADC10 and Voltage
Reference On or Off.
ADC10 turnon time: when the ADC10 is turned on with the
ADC10ON bit, the turnon time noted in the data sheet (t(ADC10ON))
must be observed before a conversion is started. Otherwise, the
results will be false.

Reference-voltage settling Time: When the built-in reference is
turned on with the REFON bit, the settling timing noted in the data
sheet must be observed before a conversion is started. Otherwise,
the results will be false until the reference settles. Once all internal
and external references have settled, no additional settling time is
required when selecting or changing the conversion range for each
channel.

Settling time of external signals: external signals must be settled
before performing the first conversion after turning on the ADC10.
Otherwise, the conversion results will be false.

16.5 Conversion Clock and Conversion Speed

The conversion clock for the ADC10 (ADC10CLK shown in Figure 16–8) can
be selected from several sources and can be divided by any factor from 1–8.
The ADC10CLK is used for the A/D conversion and to generate the sampling
period [if pulse-sampling mode is selected (SHP=1)]. Possible clock sources
are the internal oscillator (ADC10OSC), ACLK, MCLK, and SMCLK.

The internal oscillator generates the ADC10OSC signal and is in the 5-MHz
range (see device data sheet for specifications). The internal-oscillator
frequency will vary with individual devices, supply voltage, and temperature.
A stable clock source should be used for the conversion clock when accurate
conversion timing is required.

Figure 16–8. The Conversion Clock ADC10CLK

ACLK
Divide by

1,2,3,4,5,6,7,8
VR– VR+

10-Bit A/D Converter Core

ADC10ON

ADC10CLK

ADC10DIV
ADC10SSEL

Internal
Oscillator

ADC10OSC

To Sample and Hold

To Pin

MCLK

SMCLK

Sampling

16-18

The conversion starts after the sample period (4 × ADC10CLK) is completed.
(see the Sampling section). A total of eleven conversion clocks (ADC10CLK)
are required to complete a conversion and store the result in ADC10MEM. The
conversion time is:

tconversion = 11 × (ADC10DIV/fADC10CLK)

Where ADC10DIV is any integer from 1 to 8. The ADC10CLK frequency must
not exceed the maximum and minimum frequencies specified in the data
sheet. Either violation may result in inaccurate conversion results.

Note: Availability of ADC10CLK During Conversion

Users must ensure that the clock chosen for ADC10CLK remains active until
the ADC10 can complete its operation. If the clock is removed while the
ADC10 is active, the operation can not be completed and the end-of-conver-
sion feedback to the program is not possible.

16.6 Sampling

16.6.1 Sampling Operation

The sample-and-hold circuitry samples the analog signal with the four
ADC10CLKs prior to the conversion.

Figure 16–9. Sample and Conversion, Basic Signal Timing, ADC10OSC Selected for
ADC10CLK

t(Sample) =
4 x ADC10 CLK

t(Conversion and Hold)

Start
Sampling

Stop Sampling
Start Conversion

Stop
Conversion Conversion Loaded

to ADC10MEM

SHI

ADC10CLK

Figure 16–10. Sample and Conversion, Basic Signal Timing, SMCLK Selected for
ADC10CLK

Start
Sampling

Stop Sampling
Start Conversion

Stop
Conversion Conversion Loaded

to ADC10MEM

t(Sample) =
4 x ADC10 CLK

t(Conversion and Hold)

The Sample t(Sample) Starts With The First Leading Edge of ADC10CLK

SHI

ADC10CLK
(From SMCLK)

Sampling

16-19ADC10

The analog input signal must be valid and steady during the sampling period
in order to obtain an accurate conversion. It is also desirable not to have any
digital activity on any adjacent channels during the whole conversion period
to ensure that errors due to supply glitching, ground bounce, or crosstalk do
not corrupt the conversion results.

In addition, gains and losses in internal charge limit the hold time. The user
should ensure that the data sheet limits are not violated. Otherwise, the
sampled analog voltage may increase or decrease, resulting in false
conversion values.

16.6.2 Sample Signal Input Selection

The leading edge of the sample-signal input SHI triggers the sample
(4 × ADC10CLK) and conversion cycle (11 × ADC10CLK).

The sample-signal input SHI is selected by the SHS bits in ADC10CTL1. There
are four choices for the sample-signal input: ADC10SC, ADC10I1, ADC10I2,
and ADC10I3. The polarity of the sample-signal input may be selected by the
ISSH bit (see Figure 16–1).

The sample-signal input can be asynchronous to a conversion-enable, and is
synchronized and enabled by the ENC bit. Without synchronization, the first
sampling period after the ENC bit is set could be erroneous, depending on
where the ENC bit is set within the cycle of the input signal. In Figure 16–11,
for example, note that the ENC bit is set in the middle of a high pulse from the
sample-signal input. If the sample-input signal were simply passed directly to
the S/H, the first conversion of the example would be erroneous because the
first sampling period is too short.

To prevent this problem, synchronization logic is implemented in the sample
input selection switch. This ensures that the first sample-and-conversion cycle
begins with the first rising edge of the sample-input signal applied after the
ENC bit is set. Additionally, the last sample-and-conversion begins with the
first rising edge of the sample-input signal after ENC has been reset.

Figure 16–11.Synchronized Sample and Conversion Signal With Enable Conversion

Enable Conversion
ENC

Sample-Signal

SHI

Sample and conversions
Trigger signal enabled

tssync

tENC

esynct

Input

Sampling

16-20

16.6.3 Using the MSC Bit

If the operating mode is other than single-channel single-conversion
(CONSEQ > 0), the MSC bit can be used to configure the converter to perform
the successive conversions automatically and as quickly as possible.

If MSC = 0, then a rising edge of the SHI signal is required to trigger each
sample-and-conversion, regardless of what mode the converter is in. When
MSC = 1 and CONSEQ > 0, the first rising edge of the SHI signal triggers the
first conversion, but successive conversions are triggered automatically as
soon as the prior conversion is completed. Additional rising edges on SHI are
ignored until the sequence is completed or until the ENC bit is toggled
(depending on mode). The function of the ENC bit is unchanged when using
the MSC bit. See Figure 16–12 and Figure 16–13.

Figure 16–12. Use of MSC Bit With Nonrepeated Modes

SAMPCON

SHI

Single channel

ENC

MSC = 0

MSC = 0
Sequence of
Channel

MSC = 1
Sequence of
Channel

MSC = 1Single channelSAMPCON

SAMPCON

SAMPCON

S/C

Conversion Period
Sample Period

S/C S/C S/C S/C

1 2 3 4

1 2 3 4

S/C S/C S/CS/C

S/C S/C S/C S/C

1 2 3 4

S/C S/C

Figure 16–13. Use of MSC Bit With Repeated Modes

SAMPCON

SHI

Repeat Sequence
of Channels

ENC

MSC = 0

MSC = 1

MSC = 0
Repeat Single
Channel

MSC = 1

S/C

S/C

Conversion Period
Sample Period

S/C

S/CS/CS/C

S/CS/CS/C

S/CS/CS/C S/CS/CS/C S/CS/C S/C

Repeat Single
Channel

Repeat Sequence
of Channel

SAMPCON

SAMPCON

S/C

S/C S/C S/C

1 2 3 1 3 1

1 2 3

S/CS/CS/C

1 2 3

S/CS/CS/C

1 2 3

S/CS/CS/C

1 2 3

S/C

1

S/CS/CS/C

1 2 3

2

Sampling

16-21ADC10

16.6.4 Sample Timing Considerations

The A/D converter uses the charge redistribution method. Thus, when the
inputs are internally switched to sample the input analog signal, the switching
action causes displacement currents to flow into and out of the analog inputs.
These current spikes or transients occur at the leading and falling edges of the
sample pulse, and usually decay and settle before causing any problems
because typically the external time constant is less than that presented by the
internal effective RC. Internally, the analog inputs see an effective maximum
nominal RC of a 30 pF (C-array) capacitor in series with a 2-kΩ resistor (Ron
of switches). However, if the external dynamic-source impedance is large,
then these transients may not settle within the allocated sampling time to
ensure 10 bits of accuracy.

It is imperative that the proper sample timing be used for accurate
conversions. The next section discusses how to calculate the sample timing.

16.6.4.1 Simplified Sample-Timing Analysis

Using the equivalent circuit shown in Figure 16–14, the time required to charge
the analog-input capacitance from 0 to VS within 1/2 LSB can be derived as
follows.

Figure 16–14. Equivalent Circuit

Rs ri
VS VC

MSP430

Ci

VI

VI = Input voltage at pin Ax
VS= External driving-source voltage
Rs = Source resistance (must be real at input frequency)
ri = Input resistance (MUX-on resistance)
Ci = Input capacitance
VC= Capacitance-charging voltage

The capacitance-charging voltage is given by:

VC � VS�1–EXP� –tc
Rt� Ci
�� (1)

Where:
Rt = Rs + Zi
tc = Cycle time

The input impedance Zi is ~1 kΩ at 3.0 V, and is higher (~ 2 kΩ) at 1.8 V. The
final voltage to 1/2 LSB is given by:

VC (1�2LSB) � VS�� VS
2048
� (2)

Equating equation 1 to equation 2 and solving for cycle time tc gives:

VS�� VS
2048
� � VS�1� EXP� � tc

Rt� Ci
�� (3)

ADC10 Control Registers

16-22

and the time to charge to 1/2 LSB (minimum sampling time) is:

tch(1/2 LSB) = Rt x Ci x In(2048)

Where:

In(2048) = 7.625

Therefore, with the values given, the time for the analog input signal to settle
is:

(4)tch(1/2 LSB) = (Rs + 1 kΩ) × Ci × 7.625

This time must be less than the sampling time.

The maximum ADC10CLK frequency is:

fADC10CLK(max) �
4

tch(1�2LSB)
(5)

This frequency must not exceed the maximum ADC10CLK frequency
specified in the data sheet.

16.7 ADC10 Control Registers

Two control registers and one conversion-memory register are used to
configure the ADC10:

Register Short Form Register Type Address Initial State

ADC control register 0 ADC10CTL0 Read/write 01A0h Reset with POR

ADC control register 1 ADC10CTL1 Read/write 01A2h Reset with POR

ADC memory ADC10MEM Read 0140h Unchanged

Note: These registers may be accessed by any instruction subject to register-access restrictions.

16.7.1 Control Registers ADC10CTL0 and ADC10CTL1

All control bits of ADC10CTL0 and ADC10CTL1 are reset during POR. Most
of the control bits in registers ADC10CTL0 and ADC10CTL1 can only be
modified if ENC is reset. These bits are marked . All other bits can

be modified at any time.

The control bits of control register ADC10CTL0 and ADC10CTL1 are:

ENCADC10ADC10 ADC10
SC

rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0) rw–(0)

Sref Reserved for Future use 2_5V REF
ON

MSC
ON

ADCADC10CTL0
1A0h IE IFG

ADC10 Control Registers

16-23ADC10

ADC10SC bit0 Sample and convert. The ADC10SC bit can be used to control the
conversion with software if ENC is set. It is recommended to have ISSH=0.
Setting (ISSH=0) or resetting (ISSH=1) the ADC10SC bit starts the
sample-and- conversion operation. When the A/D conversion is complete
(BUSY=0) the ADC10SC bit is automatically reset.

All automatic-sequence functions (CONSEQ={1,2,3}) and multiple sample-
and-conversion functions (MSC=1) are executed normally. Therefore, when
using ADC10SC the software must ensure that the frequency of the timing
of the ADC10SC bit meets the applicable timing requirements.

NOTE: The start of a conversion by software (SHS=0, in ADC10CTL1) is
possible by setting both ENC and ADC10SC control bits within one
instruction.

ENC bit1 Enable conversion. The software (via ADC10SC) or external signals can
start a conversion only if the enable-conversion bit ENC is high. Most of the
control bits in ADC10CTL0 and ADC10CTL1 may be changed only if ENC
is low.

0 : No conversion can be started. This is the initial state.
1 : The first sample and conversion starts with the first rising edge of the SHI
signal. The selected operation proceeds as long as ENC is set.

CONSEQ=0, ADC10BUSY=1, ENC= 1→ 0:
In this mode, if ENC is reset, the current conversion is immediately stopped.
The conversion results are unpredictable.

CONSEQ≠0, ADC10BUSY=x, ENC= 1→ 0:
In these modes, if ENC is reset, the current conversion or sequence is
completed and the conversion results are valid. The conversion activities
are stopped after the current conversion or sequence is completed.

ADC10IFG bit2 ADC10 interrupt flag. The ADC10IFG is set if register ADC10MEM has been
loaded with the conversion result.

It is automatically reset when the interrupt service starts. It may also be reset
by software, such as BIC #ADC10IFG,&ADC10CTL0.

ADC10IE bit3 ADC10 interrupt enable. An ADC10 interrupt request (ADC10IFG = 1) is
accepted if the ADC10IE bit and the general interrupt enable bit GIE are set.

ADC10ON bit4 Turns on the 10-bit ADC core. Settling-time constraints must be met when
the ADC10 core is powered up.

0: Power consumption of the core is off. No conversion will be started.
1: ADC core is supplied with power. If no A/D conversion is needed,

ADC10ON can be reset to conserve power.

REFON bit5 Reference voltage ON.

0: The internal-reference voltage is switched off. No power is consumed
from the reference-voltage generator.

1: The internal-reference voltage is switched on. The reference-voltage
generator consumes power. When the reference generator is switched
on, the settling time of the reference voltage must be completed before
the first sampling and conversion is started.

ADC10 Control Registers

16-24

2_5V bit6 Reference-voltage level.

0: The internal reference voltage is 1.5V, if REFON = 1.
1: The internal reference voltage is 2.5V, if REFON = 1.

MSC bit7 Multiple sample and conversion. Valid only when the A/D mode is chosen
as repeat-single-channel, sequence-of-channel or repeat-sequence-of-
channels (CONSEQ≠0).

0: The sampling timer starts with a rising edge of the SHI signal to trigger
each sample-and-conversion.

1: The first rising edge of the SHI signal triggers the sampling timer, but
further sample-and-conversion are performed automatically as soon as
the prior conversion is completed—without additional rising edges of
SHI. Additional rising edges of SHI are ignored until the sequence has
completed or the ENC bit has been toggled (depending on mode).

Reserved bits
8–12

Reserve for future use.

Sref bits
13–15

The Sref bits select one of six reference voltage combinations used for
conversion. The conversion is done between the selected voltage range VR+
and VR–.

0: VR+ = AVCC and VR– = AVSS
1: VR+ = VREF+ and VR– = AVSS
2,3: VR+ = VeREF+ and VR– = AVSS
4: VR+ = AVCC and VR– = VREF–/ VeREF–
5: VR+ = VREF+ and VR– = VREF–/ VeREF–
6,7: VR+ = VeREF+ and VR– = VREF–/ VeREF–

rw –(0) rw –(0) rw –(0) rw –(0) rw –(0) rw –(0) rw –(0) r –(0)rw –(0) rw –(0) rw –(0) rw –(0)

ADC10SSELADC10DIVINCH

rw –(0) rw –(0) rw –(0) rw –(0)

CONSEQSHS
ADC10
BUSYMSC

Reserved for Future use

ADC10CTL1
01A2h

ADC10BUSY bit 0 The ADC10BUSY bit indicates an active sample or conversion operation. It
is used specifically when the conversion mode is single-channel-
single-conversion, because if the ENC bit is reset in this mode, the
conversion stops immediately and the results are invalid. Therefore, the
ADC10BUSY bit should be tested to verify that it is 0 before resetting the
ENC bit when in single-channel-single-conversion mode.

The busy bit also indicates if sequence or repeat mode is still active even if
the end of these modes is already started by resetting the ENC bit.

0: No operation is active.
1: A sample period, conversion or conversion sequence is active.

ADC10 Control Registers

16-25ADC10

CONSEQ bits
1–2

The CONSEQ bits select the conversion mode. Repeat mode is on if the
CONSEQ.1 is set.

0: Single-channel-single-conversion mode. One single channel is
converted once.

1: Sequence-of-channels mode. A sequence of conversions is executed
once.

2: Repeat-single-channel mode. Conversions on a single channel are
repeated until CONSEQ is set to 0 or 1.

3: Repeat-sequence-of-channels. A sequence of conversions is repeated
until CONSEQ is set to 0 or 1.

NOTE: See also the Conversion Modes section.

ADC10SSEL bits
3–4

Select the clock source for the converter core

0: ADC10 internal oscillator, ADC10OSC
1: ACLK
2: MCLK
3: SMCLK

ADC10DIV bits
5–7

Select the division rate for the clock source selected by ADC10SSEL bits.

0 to 7: Divide selected clock source by 1 to 8
The divider’s output signal name is ADC10CLK. Eleven of these clocks are
required for a conversion.

ISSH bit8 Invert sample-input signal.

0: The sample-input signal is not inverted.
1: The sample-input signal is inverted.

bit9 Reserved for future use.

SHS bits
10–11

Source select for the sample-input signal.

0: Control bit ADC10SC is selected.
1: ADC10I1
2: ADC10I2
3: ADC10I3

INCH bits
12–15

Input channel bits are used to select which ADC10 input channel is
converted

Warning! Modifying ADC Control Register During Active
Conversion

The enable conversion control bit (ENC) in the ADC10CTL0 register
protects most bits from modification during an active conversion.
However, some bits that are necessary for proper completion of
active conversions and interrupt enable bits can be modified
independently of ENC. The user must use caution when modifying
theses bits to ensure an active conversion is not corrupted, or to
not use corrupted data.

To avoid corrupting any active conversions, stop the conversion,
wait for the busy bit to be reset, reset the ENC bit, then modify the
control bits.

A/D Grounding and Noise Considerations

16-26

16.7.2 Conversion-Memory Register ADC10MEM

One register ADC10MEM is loaded after a conversion is completed::

0

rw rwr0 r0 rw rw
01xxh

ADC10MEM

15 12 11

r0 r0 rw rw rw rwrw rw rw rw

MSB LSB0000 00

16.8 A/D Grounding and Noise Considerations

As with any high-resolution converter, care and special attention must be paid
to the printed-circuit-board layout and the grounding scheme to eliminate
ground loops and any unwanted parasitic components/effects and noise.
Industry-standard grounding and layout techniques should be followed to
reduce these unwanted effects.

Ground Loops are formed when return current from the A/D flows through
paths that are common with other analog or digital circuitry. If care is not taken,
this current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. One way
to avoid ground loops is to use a star connection scheme for AVSS (shown in
Figure 15–26). This way the ground current or reference currents do not flow
through any common input leads, eliminating any error voltages.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. The ripple can become more dominant by reducing the value of the
conversion voltage range (VR+ – VR–), therefore reducing the value of the LSB
and the noise margin. Thus a clean, noise-free setup becomes even more
important to achieve the desired accuracy. Adding carefully placed bypass
capacitors returned to the respective ground planes can help in reducing ripple
in the supply current and minimizing these effects.

A/D Grounding and Noise Considerations

16-27ADC10

Figure 16–15. A/D Grounding and Noise Considerations

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

10 µF 0.1 µF

AVCC

10 µF 0.1 µF

DVCC

VREF
+
–

VeREF+

VREF+

VIN
+
–

A0. . . 7

AVSS

DVSS

A/D

16-28

A-1Peripheral File Map

Peripheral File Map

This appendix summarizes the peripheral file (PF) and control-bit information
into a single location for reference.

Each PF register is presented as a row of boxes containing the control or status
bits belonging to the register. The register symbol (e.g. P0IN) and the PF hex
address are to the left of each register.

Topic Page

A.1 Overview A-2.

A.2 Special Function Register of MSP430x1xx Family, Byte Access A-3. . .

A.3 Digital I/O, Byte Access A-3.

A.4 Basic Clock Registers, Byte Access A-5.

A.5 EPROM Control Register Byte Access A-5.

A.6 Comparator_A Registers, Byte Access A-5.

A.7 USART0, USART1, UART Mode (Sync=0), Byte Access A-6.

A.8 USART0, USART1 SPI Mode (Sync=1), Byte Access A-7.

A.9 ADC12 Registers, Byte and Word Access A-8.

A.10 Watchdog/Timer, Word Access A-11.

A.11 Flash Control Registers, Word Access A-11.

A.12 Hardware Multiplier, Word Access A-12.

A.13 Timer_A Registers, Word Access A-13.

A.14 Timer_B Registers, Word Access A-15.

Appendix A

Overview

A-2

A.1 Overview

Bit accessibility and/or hardware definitions are indicated following each bit
symbol:

� rw: Read/write

� r: Read only

� r0: Read as 0

� r1: Read as 1

� w: Write only

� w0: Write as 0

� w1: Write as 1

� (w): No register bit implemented; writing a 1 results in a
pulse. The register bit is always read as 0.

� h0: Cleared by hardware

� h1: Set by hardware

� –0,–1: Condition after PUC signal active

� –(0),–(1): Condition after POR signal active

The tables in the following sections describe byte access to each peripheral
file according to the previously-described definitions.

Special Function Register of MSP430x1xx Family, Byte Access

A-3Peripheral File Map

A.2 Special Function Register of MSP430x1xx Family, Byte Access

000Fh

Module enable 2,
ME2

0005h

UTXE1
rw-0

URXE1
USPIE1

rw-0

Module enable 1,
ME1

0004h

UTXE0
rw-0

URXE0
USPIE0

rw-0

Interrupt flag 2,
IFG2

0003h

UTXIFG1
rw-1

URXIFG1
rw-0

UTXIFG0†
rw-1

URXIFG0†
rw-0

Interrupt flag 1,
IFG1

0002h

UTXIFG0‡
rw-1

URXIFG0‡
rw-0

NMIIFG
rw-0

OFIFG
rw-1

WDTIFG
rw-0

Interrupt enable
2, IE2
0001h

UTXIE1
rw-0

URXIE1
rw-0

UTXIE0†
rw-0

URXIE0†
rw-0

Interrupt enable
1, IE1
0000h

UTXIE0‡
rw-0

URXIE0‡
rw-0

ACCVIE
rw-0

NMIIE
rw-0

OFIE
rw-0

WDTIE
rw-0

† ’12x devices only
‡ ’13x and ’14x devices only

Note: SFR bits are not implemented on devices without the corresponding peripheral.

A.3 Digital I/O, Byte Access

Bit # - 7 6 5 4 3 2 1 0

Function select, P4SEL
001Fh

P4SEL.7
rw-0

P4SEL.6
rw-0

P4SEL.5
rw-0

P4SEL.4
rw-0

P4SEL.3
rw-0

P4SEL.2
rw-0

P4SEL.1
rw-0

P4SEL.0
rw-0

Direction register, P4DIR
001Eh

P4DIR.7
rw-0

P4DIR.6
rw-0

P4DIR.5
rw-0

P4DIR.4
rw-0

P4DIR.3
rw-0

P4DIR.2
rw-0

P4DIR.1
rw-0

P4DIR.0
rw-0

Output register, P4OUT
001Dh

P4OUT.7
rw

P4OUT.6
rw

P4OUT.5
rw

P4OUT.4
rw

P4OUT.3
rw

P4OUT.2
rw

P4OUT.1
rw

P4OUT.0
rw

Input register, P4IN
001Ch

P4IN.7
r

P4IN.6
r

P4IN.5
r

P4IN.4
r

P4IN.3
r

P4IN.2
r

P4IN.1
r

P4IN.0
r

Function select, P3SEL
001Bh

P3SEL.7
rw-0

P3SEL.6
rw-0

P3SEL.5
rw-0

P3SEL.4
rw-0

P3SEL.3
rw-0

P3SEL.2
rw-0

P3SEL.1
rw-0

P3SEL.0
rw-0

Direction register, P3DIR
001Ah

P3DIR.7
rw-0

P3DIR.6
rw-0

P3DIR.5
rw-0

P3DIR.4
rw-0

P3DIR.3
rw-0

P3DIR.2
rw-0

P3DIR.1
rw-0

P3DIR.0
rw-0

Output register, P3OUT
0019h

P3OUT.7
rw

P3OUT.6
rw

P3OUT.5
rw

P3OUT.4
rw

P3OUT.3
rw

P3OUT.2
rw

P3OUT.1
rw

P3OUT.0
rw

Input register, P3IN
0018h

P3IN.7
r

P3IN.6
r

P3IN.5
r

P3IN.4
r

P3IN.3
r

P3IN.2
r

P3IN.1
r

P3IN.0
r

0017h

0016h

0010h

Digital I/O, Byte Access (Continued)

A-4

A.3 Digital I/O, Byte Access (Continued)

Bit # - 7 6 5 4 3 2 1 0

Function select, P6SEL
0037h

P6SEL.7
rw-0

P6SEL.6
rw-0

P6SEL.5
rw-0

P6SEL.4
rw-0

P6SEL.3
rw-0

P6SEL.2
rw-0

P6SEL.1
rw-0

P6SEL.0
rw-0

Direction register, P6DIR
0036h

P6DIR.7
rw-0

P6DIR.6
rw-0

P6DIR.5
rw-0

P6DIR.4
rw-0

P6DIR.3
rw-0

P6DIR.2
rw-0

P6DIR.1
rw-0

P6DIR.0
rw-0

Output register, P6OUT
0035h

P6OUT.7
rw

P6OUT.6
rw

P6OUT.5
rw

P6OUT.4
rw

P6OUT.3
rw

P6OUT.2
rw

P6OUT.1
rw

P6OUT.0
rw

Input register, P6IN
0034h

P6IN.7
r

P6IN.6
r

P6IN.5
r

P6IN.4
r

P6IN.3
r

P6IN.2
r

P6IN.1
r

P6IN.0
r

Function select, P5SEL
0033h

P5SEL.7
rw-0

P5SEL.6
rw-0

P6SEL.5
rw-0

P5SEL.4
rw-0

P5SEL.3
rw-0

P5SEL.2
rw-0

P5SEL.1
rw-0

P5SEL.0
rw-0

Direction register, P5DIR
0032h

P5DIR.7
rw-0

P5DIR.6
rw-0

P5DIR.5
rw-0

P5DIR.4
rw-0

P5DIR.3
rw-0

P5DIR.2
rw-0

P5DIR.1
rw-0

P5DIR.0
rw-0

Output register, P5OUT
0031h

P5OUT.7
rw

P5OUT.6
rw

P5OUT.5
rw

P5OUT.4
rw

P5OUT.3
rw

P5OUT.2
rw

P5OUT.1
rw

P5OUT.0
rw

Input register, P5IN
0030h

P5IN.7
r

P5IN.6
r

P5IN.5
r

P5IN.4
r

P5IN.3
r

P5IN.2
r

P5IN.1
r

P5IN.0
r

002Fh

Function select, P2SEL
002Eh

P2SEL.7
rw-0

P2SEL.6
rw-0

P2SEL.5
rw-0

P2SEL.4
rw-0

P2SEL.3
rw-0

P2SEL.2
rw-0

P2SEL.1
rw-0

P2SEL.0
rw-0

Interrupt enable, P2IE
002Dh

P2IE.7
rw-0

P2IE.6
rw-0

P2IE.5
rw-0

P2IE.4
rw-0

P2IE.3
rw-0

P2IE.2
rw-0

P2IE.1
rw-0

P2IE.0
rw-0

Interrupt edge select, P2IES
002Ch

P2IES.7
rw

P2IES.6
rw

P2IES.5
rw

P2IES.4
rw

P2IES.3
rw

P2IES.2
rw

P2IES.1
rw

P2IES.0
rw

Interrupt flags, P2IFG
002Bh

P2IFG.7
rw-0

P2IFG.6
rw-0

P2IFG.5
rw-0

P2IFG.4
rw-0

P2IFG.3
rw-0

P2IFG.2
rw-0

P2IFG.1
rw-0

P2IFG.0
rw-0

Direction register, P2DIR
002Ah

P2DIR.7
rw-0

P2DIR.6
rw-0

P2DIR.5
rw-0

P2DIR.4
rw-0

P2DIR.3
rw-0

P2DIR.2
rw-0

P2DIR.1
rw-0

P2DIR.0
rw-0

Output register, P2OUT
0029h

P2OUT.7
rw

P2OUT.6
rw

P2OUT.5
rw

P2OUT.4
rw

P2OUT.3
rw

P2OUT.2
rw

P2OUT.1
rw

P2OUT.0
rw

Input register, P2IN
0028h

P2IN.7
r

P2IN.6
r

P2IN.5
r

P2IN.4
r

P2IN.3
r

P2IN.2
r

P2IN.1
r

P2IN.0
r

0027h

Function select, P1SEL
0026h

P1SEL.7
rw-0

P1SEL.6
rw-0

P1SEL.5
rw-0

P1SEL.4
rw-0

P1SEL.3
rw-0

P1SEL.2
rw-0

P1SEL.1
rw-0

P1SEL.0
rw-0

Interrupt enable, P1IE
0025h

P1IE.7
rw-0

P1IE.6
rw-0

P1IE.5
rw-0

P1IE.4
rw-0

P1IE.3
rw-0

P1IE.2
rw-0

P1IE.1
rw-0

P1IE.0
rw-0

Int. edge select, P1IES
0024h

P1IES.7
rw

P1IES.6
rw

P1IES.5
rw

P1IES.4
rw

P1IES.3
rw

P1IES.2
rw

P1IES.1
rw

P1IES.0
rw

Interrupt flags, P1IFG
0023h

P1IFG.7
rw-0

P1IFG.6
rw-0

P1IFG.5
rw-0

P1IFG.4
rw-0

P1IFG.3
rw-0

P1IFG.2
rw-0

P1IFG.1
rw-0

P1IFG.0
rw-0

Direction register, P1DIR
0022h

P1DIR.7
rw-0

P1DIR.6
rw-0

P1DIR.5
rw-0

P1DIR.4
rw-0

P1DIR.3
rw-0

P1DIR.2
rw-0

P1DIR.1
rw-0

P1DIR.0
rw-0

Output register, P1OUT
0021h

P1OUT.7
rw

P1OUT.6
rw

P1OUT.5
rw

P1OUT.4
rw

P1OUT.3
rw

P1OUT.2
rw

P1OUT.1
rw

P1OUT.0
rw

Input register, P1IN
0020h

P1IN.7
r

P1IN.6
r

P1IN.5
r

P1IN.4
r

P1IN.3
r

P1IN.2
r

P1IN.1
r

P1IN.0
r

 Basic Clock Registers, Byte Access

A-5Peripheral File Map

A.4 Basic Clock Registers, Byte Access
Bit # – 7 6 5 4 3 2 1 0

BCSCTL2
0058h

SELM.1
rw–0

SELM.0
rw–0

DIVM.1
rw–0

DIVM.0
rw–0

SELS
rw–0

DIVS.1
rw–0

DIVS.0
rw–0

DCOR
rw–0

BCSCTL1
0057h

XT2OFF
rw–(1)

XTS
rw–(0)

DIVA.1
rw–(0)

DIVA.0
rw–(0)

XT5V
rw–0

Rsel.2
rw–1

Rsel.1
rw–0

Rsel.0
rw–0

DCOCTL
0056h

DCO.2
rw–0

DCO.1
rw–1

DCO.0
rw–1

MOD.4
rw–0

MOD.3
rw–0

MOD.2
rw–0

MOD.1
rw–0

MOD.0
rw–0

A.5 EPROM Control Register Byte Access

Bit # – 7 6 5 4 3 2 1 0

EPROM control register†
EPCTL
0054h

r-0 r-0 r-0 r-0 r-0 r-0 VPPS
rw-0

EXE
rw-0

† Non-EPROM devices may use this register for other control purposes.

A.6 Comparator_A Registers, Byte Access

Bit # – 7 6 5 4 3 2 1 0

Comparator_A Port Disable, CAPD
005Bh

CAPD.7
rw–(0)

CAPD.6
rw–(0)

CAPD.5
rw–(0)

CAPD.4
rw–(0)

CAPD.3
rw–(0)

CAPD.2
rw–(0)

CAPD.1
rw–(0)

CAPD.0
rw–(0)

Comparator_A control reg. 2, CACTL2
005Ah

CACTL2.7
rw–(0)

CACTL2.6
rw–(0)

CACTL2.5
rw–(0)

CACTL2.4
rw–(0)

CA1
rw–(0)

CA0
rw–(0)

CAF
rw–(0)

CAOUT
r–(0)

Comparator_A control reg. 1, CACTL1
0059h

CAEX
rw–(0)

CARSEL
rw–(0)

CAREF1
rw–(0)

CAREF0
rw–(0)

CAON
rw–(0)

CAIES
rw–(0)

CAIE
rw–(0)

CAIFG
rw–(0)

USART0, USART1, UART Mode (Sync=0), Byte Access

A-6

A.7 USART0, USART1, UART Mode (Sync=0), Byte Access

Bit # – 7 6 5 4 3 2 1 0

USART1
Transmit buffer UTXBUF1

07Fh

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART1
Receive buffer URXBUF1

07Eh

27
r

26
r

25
r

24
r

23
r

22
r

21
r

20
r

USART1
Baud rate UBR11

07Dh

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

USART1
Baud rate UBR01

07Ch

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART1
Modulation control

UMCTL1 07Bh

m7
rw

m6
rw

m5
rw

m4
rw

m3
rw

m2
rw

m1
rw

m0
rw

USART1
Receive control URCTL1

07Ah

FE
rw-0

PE
rw-0

OE
rw-0

BRK
rw-0

URXEIE
rw-0

URXWIE
rw-0

RXWake
rw-0

RXERR
rw-0

USART1
Transmit control UTCTL1

079h

Unused
rw-0

CKPL
rw-0

SSEL1
rw-0

SSEL0
rw-0

URXSE
rw-0

TXWAKE
rw-0

Unused
rw-0

TXEPT
rw-1

USART1
USART control UCTL1

078h

PENA
rw-0

PEV
rw-0

SP
rw-0

CHAR
rw-0

Listen
rw-0

SYNC
rw-0

MM
rw-0

SWRST
rw-1

USART0
Transmit buffer UTXBUF0

077h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART0
Receive buffer URXBUF0

076h

27
r

26
r

25
r

24
r

23
r

22
r

21
r

20
r

USART0
Baud rate UBR10

075h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

USART0
Baud rate UBR00

074h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART0
Modulation control

UMCTL0 073h

m7
rw

m6
rw

m5
rw

m4
rw

m3
rw

m2
rw

m1
rw

m0
rw

USART0
Receive control URCTL0

072h

FE
rw-0

PE
rw-0

OE
rw-0

BRK
rw-0

URXEIE
rw-0

URXWIE
rw-0

RXWake
rw-0

RXERR
rw-0

USART0
Transmit control UTCTL0

071h

Unused
rw-0

CKPL
rw-0

SSEL1
rw-0

SSEL0
rw-0

URXSE
rw-0

TXWAKE
rw-0

Unused
rw-0

TXEPT
rw-1

USART0
USART control UCTL0

070h

PENA
rw-0

PEV
rw-0

SP
rw-0

CHAR
rw-0

Listen
rw-0

SYNC
rw-0

MM
rw-0

SWRST
rw-1

USART0, USART1, SPI Mode (Sync=1), Byte Access

A-7Peripheral File Map

A.8 USART0, USART1, SPI Mode (Sync=1), Byte Access

Bit # – 7 6 5 4 3 2 1 0

USART1
Transmit buffer UTXBUF1

07Fh

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART1
Receive buffer URXBUF1

07Eh

27
r

26
r

25
r

24
r

23
r

22
r

21
r

20
r

USART1
Baud rate UBR11

07Dh

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

USART1
Baud rate UBR01

07Ch

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART1
Modulation control

UMCTL1 07Bh

m7
rw

m6
rw

m5
rw

m4
rw

m3
rw

m2
rw

m1
rw

m0
rw

USART1
Receive control URCTL1

07Ah

FE
rw-0

Undef.
rw-0

OE
rw-0

Undef.
rw-0

Unused
rw-0

Unused
rw-0

Undef.
rw-0

Undef.
rw-0

USART1
Transmit control UTCTL1

079h

CKPH
rw-0

CKPL
rw-0

SSEL1
rw-0

SSEL0
rw-0

Unused
rw-0

Unused
rw-0

STC
rw-0

TXEPT
rw-1

USART1
USART control UCTL1

078h

Unused
rw-0

Unused
rw-0

Unused
rw-0

CHAR
rw-0

Listen
rw-0

SYNC
rw-0

MM
rw-0

SWRST
rw-1

USART0
Transmit buffer UTXBUF0

077h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART0
Receive buffer URXBUF0

076h

27
r

26
r

25
r

24
r

23
r

22
r

21
r

20
r

USART0
Baud rate UBR10

075h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

USART0
Baud rate UBR00

074h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

USART0
Modulation control

UMCTL0 073h

m7
rw

m6
rw

m5
rw

m4
rw

m3
rw

m2
rw

m1
rw

m0
rw

USART0
Receive control URCTL0

072h

FE
rw-0

Undef.
rw-0

OE
rw-0

Undef.
rw-0

Unused
rw-0

Unused
rw-0

Undef.
rw-0

Undef.
rw-0

USART0
Transmit control UTCTL0

071h

CKPH
rw-0

CKPL
rw-0

SSEL1
rw-0

SSEL0
rw-0

Unused
rw-0

Unused
rw-0

STC
rw-0

TXEPT
rw-1

USART0
USART control UCTL0

070h

Unused
rw-0

Unused
rw-0

Unused
rw-0

CHAR
rw-0

Listen
rw-0

SYNC
rw-0

MM
rw-0

SWRST
rw-1

 ADC12 Registers, Byte and Word Access

A-8

A.9 ADC12 Registers, Byte and Word Access

Bit # – 7 6 5 4 3 2 1 0

ADC12MCTL15†

008Fh
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL14†

008Eh
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL13†

008Dh
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL12†

008Ch
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL11†

008Bh
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL10†

008Ah
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL9†

0089h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL8†

0088h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL7†

0087h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL6†

0086h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL5†

0085h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL4†

0084h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL3†

0083h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL2†

0082h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL1†

0081h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

ADC12MCTL0†

0080h
EOS

rw–(0)
Sref.2
rw–(0)

Sref.1
rw–(0)

Sref.0
rw–(0)

INCH.3
rw–(0)

INCH.2
rw–(0)

INCH.1
rw–(0)

INCH.0
rw–(0)

† All bits of ADC12MCTLx registers are only modifiable when ENC=0.

 ADC12 Registers, Byte and Word Access (Continued)

A-9Peripheral File Map

A.9 ADC12 Registers, Byte and Word Access (Continued)
Bit # – 15 14 13 12 11 0

ADC12MEM15
015Eh

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM14
015Ch

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM13
015Ah

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM12
0158h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM11
0156h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM10
0154h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM9
0152h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM8
0150h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM7
014Eh

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM6
014Ch

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM5
014Ah

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM4
0148h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM3
0146h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM2
0144h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM1
0142h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

ADC12MEM0
0140h

Unused
r0

Unused
r0

Unused
r0

Unused
r0

MSB <–––––––––– Conversion Result ––––––––––> LSB
All conversion-result bits of type rw

 ADC12 Registers, Byte and Word Access (Continued)

A-10

A.9 ADC12 Registers, Byte and Word Access (Continued)

Bit # – 15 14 13 12 11 10 9 8

ADC12IE
01A6h

ADC12IE.15
rw–(0)

ADC12IE.14
rw–(0)

ADC12IE.13
rw–(0)

ADC12IE.12
rw–(0)

ADC12IE.11
rw–(0)

ADC12IE.10
rw–(0)

ADC12IE.9
rw–(0)

ADC12IE.8
rw–(0)

ADC12IFG
01A4h

ADC12IFG.15
rw–(0)

ADC12IFG.14
rw–(0)

ADC12IFG.13
rw–(0)

ADC12IFG.12
rw–(0)

ADC12IFG.11
rw–(0)

ADC12IFG.10
rw–(0)

ADC12IFG.9
rw–(0)

ADC12IFG.8
rw–(0)

ADC12CTL1
01A2h

CStartAdd.3†

rw–(0)
CStartAdd.2†

rw–(0)
CStartadd.1†

rw–(0)
CStartAdd.0†

rw–(0)
SHS.1†

rw–(0)
SHS.0†

rw–(0)
SHP†

rw–(0)
ISSH†

rw–(0)

ADC12CTL0
01A0h

SHT1.3†

rw–(0)
SHT1.2†

rw–(0)
SHT1.1†

rw–(0)
SHT1.0†

rw–(0)
SHT0.3†

rw–(0)
SHT0.2†

rw–(0)
SHT0.1†

rw–(0)
SHT0.0†

rw–(0)

† Only modifiable when ENC=0.

Bit # – 7 6 5 4 3 2 1 0

ADC12IE
01A6h

ADC12IE.7
rw–(0)

ADC12IE.6
rw–(0)

ADC12IE.5
rw–(0)

ADC12IE.4
rw–(0)

ADC12IE.3
rw–(0)

ADC12IE.2
rw–(0)

ADC12IE.1
rw–(0)

ADC12IE.0
rw–(0)

ADC12IFG
01A4h

ADC12IFG.7
rw–(0)

ADC12IFG.6
rw–(0)

ADC12IFG.5
rw–(0)

ADC12IFG.4
rw–(0)

ADC12IFG.3
rw–(0)

ADC12IFG.2
rw–(0)

ADC12IFG.1
rw–(0)

ADC12IFG.0
rw–(0)

ADC12CTL1
01A2h

ADC12DIV.2†

rw–(0)
ADC12DIV.1†

rw–(0)
ADC12DIV.0†

rw–(0)
ADC12SSEL.1†

rw–(0)
ADC12SSEL.0†

rw–(0)
CONSEQ.1

rw–(0)
CONSEQ.0

rw–(0)
ADC12BUSY

r–(0)

ADC12CTL0
01A0h

MSC†

rw–(0)
2_5V†

rw–(0)
REFON†

rw–(0)
ADC12ON†

rw–(0)
ADC12OVIE

rw–(0)
ADC12TOVIE

rw–(0)
ENC

rw–(0)
ADC12SC

rw–(0)

† Only modifiable when ENC=0.

 Watchdog/Timer, Word Access

A-11Peripheral File Map

A.10 Watchdog/Timer, Word Access
Bit # – 15 8

Watchdog Timer,
Control register WDTCTL

120h

 <–––––––––––––––––––––––––– Read as 069h –––––––––––––––––––––––>
 <–––––––––––––––––––––––––– Written as 05Ah ––––––––––––––––––––––––>

Bit # – 7 6 5 4 3 2 1 0

Watchdog Timer,
Control register WDTCTL

120h

HOLD
rw-0

NMIES
rw-0

NMI
rw-0

TMSEL
rw-0

CNTCL
(w),r0

SSEL
rw-0

IS1
rw-0

IS0
rw-0

A.11 Flash Control Registers, Word Access

Bit # – 15 14 13 12 11 10 9 8

FCTL3
012Ch

 <–––––––––––––––––––––––––– Read as 096h ––––––––––––––––––––––––––––––––––>
 <–––––––––––––––––––––––––– Written as 0A5h ––––––––––––––––––––––––––––––––––>

FCTL2
012Ah

 <–––––––––––––––––––––––––– Read as 096h ––––––––––––––––––––––––––––––––––>
 <–––––––––––––––––––––––––– Written as 0A5h ––––––––––––––––––––––––––––––––––>

FCTL1
0128H

 <–––––––––––––––––––––––––– Read as 096h ––––––––––––––––––––––––––––––––––>
 <–––––––––––––––––––––––––– Written as 0A5h ––––––––––––––––––––––––––––––––––>

Bit # – 7 6 5 4 3 2 1 0

FCTL3
012Ch

Reserved
r0

Reserved
r0

EMEX
rw–0

Lock
rw–1

WAIT
r–1

ACCVIFG
rw–0

KEYV
rw–(0)

Busy
r(w)–0

FCTL2
012Ah

SSEL1
rw–0

SSEL0
rw–1

FN5
rw–0

FN4
rw–0

FN3
rw–0

FN2
rw–0

FN1
rw–1

FN0
rw–0

FCTL1
0128H

SEGWRT
rw–0

WRT
rw–0

Reserved
r0

Reserved
r0

Reserved
r0

MEras
rw–0

Erase
rw–0

Reserved
r0

 Hardware Multiplier, Word Access

A-12

A.12 Hardware Multiplier, Word Access

Bit # – 15 14 13 12 11 10 9 8

Sum extend, SumExt
013Eh

†
r

†
r

†
r

†
r

†
r

†
r

†
r

†
r

Result-high word ResHI
013Ch

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

Result-low word ResLO
013Ah

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

Second operand OP2
0138h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

MPYS+ACC MACS
0136h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

MPY+ACC MAC
0134h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

Multiply signed MPYS
0132h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

Multiply unsigned MPY
0130h

215
rw

214
rw

213
rw

212
rw

211
rw

210
rw

29
rw

28
rw

Bit # – 7 6 5 4 3 2 1 0

Sum extend, SumExt
013Eh

†
r

†
r

†
r

†
r

†
r

†
r

†
r

†
r

Result-high word ResHI
013Ch

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

Result-low word ResLO
013Ah

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

Second operand OP2
0138h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

MPYS+ACC MACS
0136h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

MPY+ACC MAC
0134h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

Multiply signed MPYS
0132h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

Multiply unsigned MPY
0130h

27
rw

26
rw

25
rw

24
rw

23
rw

22
rw

21
rw

20
rw

† The Sum Extend register SumExt holds a 16×16-bit multiplication (MPYS) sign result, or the overflow of the multiply and accu-
mulate (MAC) operation, or the sign of the signed multiply and accumulate (MACS) operation. Overflow and underflow of the
MACS operation must be handled by software.

 Timer_A Registers, Word Access

A-13Peripheral File Map

A.13 Timer_A Registers, Word Access

Bit # – 15 14 13 12 11 10 9 8

017Eh

017Ch

Cap/com register CCR4†
017Ah

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com register CCR3†
0178h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com register CCR2
0176h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com register CCR1
0174h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com register CCR0
0172h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Timer_A register TAR
0170h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

016Eh

016Ch

Cap/com control CCTL4†,
016Ah

CM41
rw-(0)

CM40
rw-(0)

CCIS41
rw-(0)

CCIS40
rw-(0)

SCS4
rw-(0)

SCCI4
rw-(0)

Unused
r0

CAP4
rw-(0)

Cap/com control CCTL3†,
0168h

CM31
rw-(0)

CM30
rw-(0)

CCIS31
rw-(0)

CCIS30
rw-(0)

SCS3
rw-(0)

SCCI3
rw-(0)

Unused
r0

CAP3
rw-(0)

Cap/com control CCTL2,
0166h

CM21
rw-(0)

CM20
rw-(0)

CCIS21
rw-(0)

CCIS20
rw-(0)

SCS2
rw-(0)

SCCI2
rw-(0)

Unused
r0

CAP2
rw-(0)

Cap/com control CCTL1,
0164h

CM11
rw-(0)

CM10
rw-(0)

CCIS11
rw-(0)

CCIS10
rw-(0)

SCS1
rw-(0)

SCCI1
rw-(0)

Unused
r0

CAP1
rw-(0)

Cap/com control CCTL0,
0162h

CM01
rw-(0)

CM00
rw-(0)

CCIS01
rw-(0)

CCIS00
rw-(0)

SCS0
rw-(0)

SCCI0
rw-(0)

Unused
r0

CAP0
rw-(0)

Timer_A control TACTL
0160h

Unused
rw-(0)

Unused
rw-(0)

Unused
rw-(0)

Unused
rw-(0)

Unused
rw-(0)

SSEL2
rw-(0)

SSEL1
rw-(0)

SSEL0
rw-(0)

† Registers are reserved on devices with Timer_A3.

 Timer_A Registers, Word Access (Continued)

A-14

A.13 Timer_A Registers, Word Access (Continued)

Bit # – 7 6 5 4 3 2 1 0

017Eh

017Ch

Cap/com register CCR4†

017Ah
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR3†

0178h
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR2
0176h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR1
0174h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR0
0172h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Timer_A register TAR
0170h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

016Eh

016Ch

Cap/com control CCTL4†,
016Ah

OutMod42

rw-(0)
OutMod41

rw-(0)
OutMod40

rw-(0)
CCIE4
rw-(0)

CCI4
r

OUT4
rw-(0)

COV4
rw-(0)

CCIFG4
rw-(0)

Cap/com control CCTL3†,
0168h

OutMod32

rw-(0)
OutMod31

rw-(0)
OutMod30

rw-(0)
CCIE3
rw-(0)

CCI3
r

OUT3
rw-(0)

COV3
rw-(0)

CCIFG3
rw-(0)

Cap/com control CCTL2,
0166h

OutMod22

rw-(0)
OutMod21

rw-(0)
OutMod20

rw-(0)
CCIE2
rw-(0)

CCI2
r

OUT2
rw-(0)

COV2
rw-(0)

CCIFG2
rw-(0)

Cap/com control CCTL1,
0164h

OutMod12

rw-(0)
OutMod11

rw-(0)
OutMod10

rw-(0)
CCIE1
rw-(0)

CCI1
r

OUT1
rw-(0)

COV1
rw-(0)

CCIFG1
rw-(0)

Cap/com control CCTL0,
0162h

OutMod02

rw-(0)
OutMod01

rw-(0)
OutMod00

rw-(0)
CCIE0
rw-(0)

CCI0
r

OUT0
rw-(0)

COV0
rw-(0)

CCIFG0
rw-(0)

Timer_A control TACTL
0160h

ID1
rw-(0)

ID0
rw-(0)

MC1
rw-(0)

MC0
rw-(0)

Unused
rw-(0)

CLR
rw-(0)

TAIE
rw-(0)

TAIFG
rw-(0)

† Registers are reserved on devices with Timer_A3.

Bit # – 15 14 13 12 11 10 9 8

Timer_A interrupt vector
TAIV 12Eh

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

Bit # – 7 6 5 4 3 2 1 0

Timer_A interrupt vector 0 0 0 0 TAIV 0Timer_A interru t vector
TAIV 12Eh

0
r0

0
r0

0
r0

0
r0 r-(0) r-(0) r-(0)

0
r0

TAIV Vector, Timer_A5 (five capture/compare blocks integrated)
0:
2:
4:
6:
8:

10:

No interrupt pending
CCIFG1 flag set, interrupt flag of capture/compare block 1
CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1=CCIFG2=0)
CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1=CCIFG2=CCIFG3=0)
TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=0)

TAIV Vector, Timer_A3 (three capture/compare blocks integrated)
0:
2:
4:
6:
8:

10:

No interrupt pending
CCIFG1 flag set, interrupt flag of capture/compare block 1
CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
Reserved
Reserved
TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=0)

 Timer_B Registers, Word Access

A-15Peripheral File Map

A.14 Timer_B Registers, Word Access

Bit # – 15 14 13 12 11 10 9 8

Cap/com regis-
ter CCR6†

019Eh

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR5†

019Ch

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR4†

019Ah

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR3†

0198h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR2

0196h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR1

0194h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com regis-
ter CCR0

0192h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Timer_B register
TBR

0190h

215
rw-(0)

214
rw-(0)

213
rw-(0)

212
rw-(0)

211
rw-(0)

210
rw-(0)

29
rw-(0)

28
rw-(0)

Cap/com control
CCTL6†, 018Eh

CM61
rw-(0)

CM60
rw-(0)

CCIS61
rw-(0)

CCIS60
rw-(0)

SCS6
rw-(0)

CLLD6.1
rw-(0)

CLLD6.0
rw–(0)

CAP6
rw-(0)

Cap/com control
CCTL5†, 018Ch

CM51
rw-(0)

CM50
rw-(0)

CCIS51
rw-(0)

CCIS50
rw-(0)

SCS5
rw-(0)

CLLD5.1
rw-(0)

CLLD5.0
rw–(0)

CAP5
rw-(0)

Cap/com control
CCTL4†, 018Ah

CM41
rw-(0)

CM40
rw-(0)

CCIS41
rw-(0)

CCIS40
rw-(0)

SCS4
rw-(0)

CCLD4.1
rw-(0)

CCLD4.0
r0

CAP4
rw-(0)

Cap/com control
CCTL3†, 0188h

CM31
rw-(0)

CM30
rw-(0)

CCIS31
rw-(0)

CCIS30
rw-(0)

SCS3
rw-(0)

CCLD3.1
rw-(0)

CCLD3.0
r0

CAP3
rw-(0)

Cap/com control
CCTL2, 0186h

CM21
rw-(0)

CM20
rw-(0)

CCIS21
rw-(0)

CCIS20
rw-(0)

SCS2
rw-(0)

CCLD2.1
rw-(0)

CCLD2.0
r0

CAP2
rw-(0)

Cap/com control
CCTL1, 0184h

CM11
rw-(0)

CM10
rw-(0)

CCIS11
rw-(0)

CCIS10
rw-(0)

SCS1
rw-(0)

CCLD1.1
rw-(0)

CCLD1.0
r0

CAP1
rw-(0)

Cap/com control
CCTL0, 0182h

CM01
rw-(0)

CM00
rw-(0)

CCIS01
rw-(0)

CCIS00
rw-(0)

SCS0
rw-(0)

CCLD0.1
rw-(0)

CCLD0.0
r0

CAP0
rw-(0)

Timer_B control
TBCTL, 0180h

Unused
rw-(0)

TBCLGRP1
rw-(0)

TBCLGRP0
rw-(0)

TBCNTL1
rw-(0)

TBCNTL0
rw-(0)

Unused
rw-(0)

TBSSEL1
rw-(0)

TBSSEL0
rw-(0)

† Registers are reserved on devices with Timer_B3.

 Timer_B Registers, Word Access (Continued)

A-16

A.14 Timer_B Registers, Word Access (Continued)

Bit # – 7 6 5 4 3 2 1 0

Cap/com register CCR6†

019Eh
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR5†

019Ch
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR4†

019Ah
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR3†

0198h
27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR2
0196h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR1
0194h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com register CCR0
0192h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Timer_B register TBR
0190h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/com control CCTL6†,
018Eh

OutMod62

rw-(0)
OutMod61

rw-(0)
OutMod60

rw-(0)
CCIE6
rw-(0)

CCI6
r

OUT6
rw-(0)

COV6
rw-(0)

CCIFG6
rw-(0)

Cap/com control CCTL5†,
018Ch

OutMod52

rw-(0)
OutMod51

rw-(0)
OutMod50

rw-(0)
CCIE5
rw-(0)

CCI5
r

OUT5
rw-(0)

COV5
rw-(0)

CCIFG5
rw-(0)

Cap/com control CCTL4†,
018Ah

OutMod42

rw-(0)
OutMod41

rw-(0)
OutMod40

rw-(0)
CCIE4
rw-(0)

CCI4
r

OUT4
rw-(0)

COV4
rw-(0)

CCIFG4
rw-(0)

Cap/com control CCTL3†,
0188h

OutMod32

rw-(0)
OutMod31

rw-(0)
OutMod30

rw-(0)
CCIE3
rw-(0)

CCI3
r

OUT3
rw-(0)

COV3
rw-(0)

CCIFG3
rw-(0)

Cap/com control CCTL2,
0186h

OutMod22

rw-(0)
OutMod21

rw-(0)
OutMod20

rw-(0)
CCIE2
rw-(0)

CCI2
r

OUT2
rw-(0)

COV2
rw-(0)

CCIFG2
rw-(0)

Cap/com control CCTL1,
0184h

OutMod12

rw-(0)
OutMod11

rw-(0)
OutMod10

rw-(0)
CCIE1
rw-(0)

CCI1
r

OUT1
rw-(0)

COV1
rw-(0)

CCIFG1
rw-(0)

Cap/com control CCTL0,
0182h

OutMod02

rw-(0)
OutMod01

rw-(0)
OutMod00

rw-(0)
CCIE0
rw-(0)

CCI0
r

OUT0
rw-(0)

COV0
rw-(0)

CCIFG0
rw-(0)

Timer_B control TACTL
0180h

TBID1
rw-(0)

TBID0
rw-(0)

TBMC1
rw-(0)

TBMC0
rw-(0)

Unused
rw-(0)

TBCLR
rw-(0)

TBIE
rw-(0)

TBIFG
rw-(0)

† Registers are reserved on devices with Timer_B3.

 Timer_B Registers, Word Access (Continued)

A-17Peripheral File Map

A.14 Timer_B Registers, Word Access (Continued)

Bit # – 15 14 13 12 11 10 9 8

Timer_B interrupt vector
TBIV 11Eh

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

0
r0

Bit # – 7 6 5 4 3 2 1 0

Timer_B interrupt vector 0 0 0 0 TBIV 0Timer_B interru t vector
TBIV 11Eh

0
r0

0
r0

0
r0

0
r0 r-(0) r-(0) r-(0)

0
r0

TBIV Vector, Timer_B5 (five capture/compare blocks integrated)
0:
2:
4:
6:
8:

10:
12:
14:

No interrupt pending
CCIFG1 flag set, interrupt flag of capture/compare block 1
CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1=CCIFG2=0)
CCIFG4 flag set, interrupt flag of capture/compare block 4 (CCIFG1=CCIFG2=CCIFG3=0)
CCIFG5 flag set, interrupt flag of capture/compare block 5 (CCIFG1=CCIFG2=CCIFG3=CCIFG4=0)
CCIFG6 flag set, interrupt flag of capture/compare block 6 (CCIFG1=CCIFG2=CCIFG3=CCIFG4=CCIFG5=0)
TBIFG flag set, interrupt flag of Timer_B register/counter
(CCIFG1=CCIFG2=CCIFG3=CCIFG4=CCIFG5=CCIFG6=0)

TBIV Vector, Timer_B3 (three capture/compare blocks integrated)
0:
2:
4:
6:
8:

10:
12:
14:

No interrupt pending
CCIFG1 flag set, interrupt flag of capture/compare block 1
CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
Reserved
Reserved
Reserved
Reserved
TBIFG flag set, interrupt flag of Timer_B register/counter (CCIFG1=CCIFG2=0)

A-18

B-1Instruction Set Description

Instruction Set Description

The MSP430 core CPU architecture evolved from a reduced instruction set
with highly-transparent instruction formats. Using these formats, core
instructions are implemented into the hardware. Emulated instructions are
also supported by the assembler. Emulated instructions use the core
instructions with the built-in constant generators CG1 and CG2 and/or the
program counter (PC). The core and emulated instructions are described in
detail in this section. The emulated instruction mnemonics are listed with
examples.

Program memory words used by an instruction vary from one to three words,
depending on the combination of addressing modes. Program memory words
and execution cycles vary with each instruction, depending on addressing
modes used. See section 5.2.8 for information on instruction words and execu-
tion cycles per instruction.

Topic Page

B.1 Instruction Set Overview B-2.

B.2 Instruction Set Description B-8.

Appendix B

Instruction Set Overview

B-2

B.1 Instruction Set Overview

The following list gives an overview of the instruction set.

Status Bits

V N Z C
* ADC[.W];ADC.B dst dst + C –> dst * * * *

ADD[.W];ADD.B src,dst src + dst –> dst * * * *
ADDC[.W];ADDC.B src,dst src + dst + C –> dst * * * *
AND[.W];AND.B src,dst src .and. dst –> dst 0 * * *
BIC[.W];BIC.B src,dst .not.src .and. dst –> dst – – – –
BIS[.W];BIS.B src,dst src .or. dst –> dst – – – –
BIT[.W];BIT.B src,dst src .and. dst 0 * * *

* BR dst Branch to – – – –
CALL dst PC+2 –> stack, dst –> PC – – – –

* CLR[.W];CLR.B dst Clear destination – – – –
* CLRC Clear carry bit – – – 0
* CLRN Clear negative bit – 0 – –
* CLRZ Clear zero bit – – 0 –

CMP[.W];CMP.B src,dst dst – src * * * *
* DADC[.W];DADC.B dst dst + C –> dst (decimal) * * * *

DADD[.W];DADD.B src,dst src + dst + C –> dst (decimal) * * * *
* DEC[.W];DEC.B dst dst – 1 –> dst * * * *
* DECD[.W];DECD.B dst dst – 2 –> dst * * * *
* DINT Disable interrupt – – – –
* EINT Enable interrupt – – – –
* INC[.W];INC.B dst Increment destination,

 dst +1 –> dst * * * *
* INCD[.W];INCD.B dst Double-Increment destination,

dst+2–>dst * * * *
* INV[.W];INV.B dst Invert destination * * * *

JC/JHS Label Jump to Label if
Carry-bit is set – – – –

JEQ/JZ Label Jump to Label if
Zero-bit is set – – – –

JGE Label Jump to Label if
(N .XOR. V) = 0 – – – –

JL Label Jump to Label if
(N .XOR. V) = 1 – – – –

JMP Label Jump to Label unconditionally – – – –
JN Label Jump to Label if

Negative-bit is set – – – –
JNC/JLO Label Jump to Label if

Carry-bit is reset – – – –
JNE/JNZ Label Jump to Label if

Zero-bit is reset – – – –

Instruction Set Overview

B-3Instruction Set Description

Status Bits

V N Z C
MOV[.W];MOV.B src,dst src –> dst – – – –

* NOP No operation – – – –
* POP[.W];POP.B dst Item from stack, SP+2 → SP – – – –

PUSH[.W];PUSH.B src SP – 2 → SP, src → @SP – – – –
RETI Return from interrupt * * * *

TOS → SR, SP + 2 → SP
TOS → PC, SP + 2 → SZP

* RET Return from subroutine – – – –
TOS → PC, SP + 2 → SP

* RLA[.W];RLA.B dst Rotate left arithmetically * * * *
* RLC[.W];RLC.B dst Rotate left through carry * * * *

RRA[.W];RRA.B dst MSB → MSB →LSB → C 0 * * *
RRC[.W];RRC.B dst C → MSB →LSB → C * * * *

* SBC[.W];SBC.B dst Subtract carry from destination * * * *
* SETC Set carry bit – – – 1
* SETN Set negative bit – 1 – –
* SETZ Set zero bit – – 1 –

SUB[.W];SUB.B src,dst dst + .not.src + 1 → dst * * * *
SUBC[.W];SUBC.B src,dst dst + .not.src + C → dst * * * *
SWPB dst swap bytes – – – –
SXT dst Bit7 → Bit8 Bit15 0 * * *

* TST[.W];TST.B dst Test destination 0 * * 1
XOR[.W];XOR.B src,dst src .xor. dst → dst * * * *

Note: Asterisked Instructions

Asterisked (*) instructions are emulated. They are replaced with core
instructions by the assembler.

Instruction Set Overview

B-4

B.1.1 Instruction Formats

The following sections describe the instruction formats.

B.1.1.1 Double-Operand Instructions (Core Instructions)

The instruction format using double operands, as shown in Figure B–1,
consists of four main fields to form a 16-bit code:

� operational code field, four bits [op-code]
� source field, six bits [source register + As]
� byte operation identifier, one bit [BW]
� destination field, five bits [dest. register + Ad]

The source field is composed of two addressing bits and a four-bit register
number (0....15). The destination field is composed of one addressing bit and
a four-bit register number (0....15). The byte identifier B/W indicates whether
the instruction is executed as a byte (B/W = 1) or as a word instruction
(B/W = 0).

Figure B–1.Double-Operand Instructions

As Destination Register

Operational Code
 Field

15 0

OP-Code B/WAd

8 712 11

Source Register

6 5 4 3

Status Bits

V N Z C
ADD[.W]; ADD.B src,dst src + dst –> dst * * * *
ADDC[.W]; ADDC.B src,dst src + dst + C –> dst * * * *
AND[.W]; AND.B src,dst src .and. dst –> dst 0 * * *
BIC[.W]; BIC.B src,dst .not.src .and. dst –> dst – – – –
BIS[.W]; BIS.B src,dst src .or. dst –> dst – – – –
BIT[.W]; BIT.B src,dst src .and. dst 0 * * *
CMP[.W]; CMP.B src,dst dst – src * * * *
DADD[.W]; DADD.B src,dst src + dst + C –> dst (dec) * * * *
MOV[.W]; MOV.B src,dst src –> dst – – – –
SUB[.W]; SUB.B src,dst dst + .not.src + 1 –> dst * * * *
SUBC[.W]; SUBC.B src,dst dst + .not.src + C –> dst * * * *
XOR[.W]; XOR.B src,dst src .xor. dst –> dst * * * *

Note: Operations Using the Status Register (SR) for Destination

All operations using status register SR for destination overwrite the SR
contents with the operation result; as described in that operation, the status
bits are not affected.

Example: ADD #3,SR ; Operation: (SR) + 3 ––> SR

Instruction Set Overview

B-5Instruction Set Description

B.1.1.2 Single Operand Instructions (Core Instructions)

The instruction format using a single operand, as shown in Figure B–2,
consists of two main fields to form a 16-bit code:

� operational code field, nine bits with four MSBs equal to 1h
� byte operation identifier, one bit [B/W]
� destination field, six bits [destination register + Ad]

The destination field is composed of two addressing bits and the four-bit
register number (0....15). The destination field bit position is the same as that
of the two operand instructions. The byte identifier (B/W) indicates whether the
instruction is executed as a byte (B/W = 1) or as a word (B/W = 0).

Figure B–2.Single-Operand Instructions

B/W Destination Register

15 0

0

9 712 11 6 5 4 3

0 0 1 X X X X X Ad

10

Destination FieldOperational Code Field

Status Bits

V N Z C
RRA[.W]; RRA.B dst MSB → MSB ...LSB → C 0 * * *
RRC[.W]; RRC.B dst C → MSB LSB → C * * * *
PUSH[.W]; PUSH.B dst SP – 2 → SP, src → @SP – – – –
SWPB dst swap bytes – – – –
CALL dst PC→2 + @SP, dst → PC – – – –
RETI dst TOS → SR, SP + 2 → SP * * * *

TOS → PC, SP + 2 → SP
SXT dst Bit 7 → Bit 8 Bit 15 0 * * *

B.1.2 Conditional and Unconditional Jumps (Core Instructions)

The instruction format for conditional and unconditional jumps, as shown in
Figure B–3, consists of two main fields to form a 16-bit code:

� operational code (op-code) field, six bits
� jump offset field, ten bits

The operational-code field is composed of the op-code (three bits), and three
bits according to the following conditions.

Figure B–3.Conditional and Unconditional Jump Instructions
15 091213

0 0 1 X X X X X

10

Operational Code Field

X X X X X XXX

OP-Code Jump-On Code Sign Offset
Jump Offset Field

Conditional jumps jump to addresses in the range of –511 to +512 words
relative to the current address. The assembler computes the signed offsets
and inserts them into the op-code.

Instruction Set Overview

B-6

JC/JHS Label Jump to label if carry bit is set

JEQ/JZ Label Jump to label if zero bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

JN Label Jump to label if negative bit is set

JNC/JLO Label Jump to label if carry bit is reset

JNE/JNZ Label Jump to label if zero bit is reset

Note: Conditional and Unconditional Jumps

Conditional and unconditional jumps do not affect the status bits.

A jump that is taken alters the PC with the offset:

PCnew = PCold + 2 + 2*offset

A jump that is not taken continues the program with the ascending instruction.

B.1.3 Emulated Instructions

The following instructions can be emulated with the reduced instruction set
without additional code words. The assembler accepts the emulated
instruction mnemonic, and inserts the applicable core instruction op-code.

Instruction Set Overview

B-7Instruction Set Description

The following list describes the emulated instruction short form.

Mnemonic Description Status Bits Emulation
V N Z C

Arithmetical instructions
ADC[.W] dst Add carry to destination * * * * ADDC #0,dst
ADC.B dst Add carry to destination * * * * ADDC.B #0,dst
DADC[.W] dst Add carry decimal to destination * * * * DADD #0,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #0,dst
DEC[.W] dst Decrement destination * * * * SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-decrement destination * * * * SUB #2,dst
DECD.B dst Double-decrement destination * * * * SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * * ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * * SUBC #0,dst
SBC.B dst Subtract carry from destination * * * * SUBC.B #0,dst

Logical instructions
INV[.W] dst Invert destination * * * * XOR #0FFFFh,dst
INV.B dst Invert destination * * * * XOR.B #0FFFFh,dst
RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst
RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * ADDC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data instructions (common use)
CLR[.W] Clear destination – – – – MOV #0,dst
CLR.B Clear destination – – – – MOV.B #0,dst
CLRC Clear carry bit – – – 0 BIC #1,SR
CLRN Clear negative bit – 0 – – BIC #4,SR
CLRZ Clear zero bit – – 0 – BIC #2,SR
POP dst Item from stack – – – – MOV @SP+,dst
SETC Set carry bit – – – 1 BIS #1,SR
SETN Set negative bit – 1 – – BIS #4,SR
SETZ Set zero bit – – 1 – BIS #2,SR
TST[.W] dst Test destination 0 * * 1 CMP #0,dst
TST.B dst Test destination 0 * * 1 CMP.B #0,dst

Program flow instructions
BR dst Branch to – – – – MOV dst,PC
DINT Disable interrupt – – – – BIC #8,SR
EINT Enable interrupt – – – – BIS #8,SR
NOP No operation – – – – MOV #0h,#0h
RET Return from subroutine – – – – MOV @SP+,PC

Instruction Set Overview

B-8

B.2 Instruction Set Description

This section catalogues and describes all core and emulated instructions in
alphabetical order. Some examples serve as explanations and others as
application hints.

The suffix .W or no suffix in the instruction mnemonic results in a word
operation.

The suffix .B at the instruction mnemonic results in a byte operation.

 Instruction Set Overview

B-9 Instruction Set Description

ADC[.W] Add carry to destination
ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C –> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

Instruction Set Overview

B-10

ADD[.W] Add source to destination
ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst –> dst

Description The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

 Instruction Set Overview

B-11 Instruction Set Description

ADDC[.W] Add source and carry to destination
ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C –> dst

Description The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Instruction Set Overview

B-12

AND[.W] Source AND destination
AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst –> dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h,TOM ; mask Lowbyte TOM with R5
JZ TONI ;
...... ; Result is not zero

 Instruction Set Overview

B-13 Instruction Set Description

BIC[.W] Clear bits in destination
BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst –> dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.

BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

Example The port pins P0 and P1 are cleared.

P0OUT .equ 011h; Definition of port address
P0_0 .equ 01h
P0_1 .equ 02h

BIC.B #P0_0+P0_1,&P0OUT ;Set P0.0 and P0.1 to low

Instruction Set Overview

B-14

BIS[.W] Set bits in destination
BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst –> dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.

BIS #003Fh,TOM; set the six LSBs in RAM location TOM

Example Start an A/D- conversion

ASOC .equ 1 ; Start of conversion bit
ACTL .equ 114h ; ADC control register

BIS #ASOC,&ACTL ; Start A/D-conversion

Example The three MSBs of RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

Example Port pins P0 and P1 are set to high.

P0OUT .equ 011h
P0 .equ 01h
P1 .equ 02h

BIS.B #P0+P1,&P0OUT

 Instruction Set Overview

B-15 Instruction Set Description

BIT[.W] Test bits in destination
BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example Determine which A/D channel is configured by the MUX.

ACTL .equ 114h ; ADC control register
BIT #4,&ACTL ; Is channel 0 selected?
jnz END ; Yes, branch to END

Example If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry –> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB is shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry –> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; | LSB
; MSB

Instruction Set Overview

B-16

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst –> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

 Instruction Set Overview

B-17 Instruction Set Description

CALL Subroutine

Syntax CALL dst

Operation dst –> tmp dst is evaluated and stored
SP – 2 –> SP
PC –> @SP PC updated to TOS
tmp –> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP–2 → SP, PC+2 → @SP, @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP–2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP–2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP–2 → SP, PC+2 → @SP, R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP–2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP–2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP–2 → SP, PC+2 → @SP, X(R5) → PC
; Indirect indirect R5 + X

Instruction Set Overview

B-18

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 –> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 –> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 –> TONI

 Instruction Set Overview

B-19 Instruction Set Description

* CLRC Clear carry bit

Syntax CLRC

Operation 0 –> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

Instruction Set Overview

B-20

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst –> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

 Instruction Set Overview

B-21 Instruction Set Description

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst –> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Instruction Set Overview

B-22

CMP[.W] Compare source and destination
CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst – src)

Description The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
L$1 CMP &BLOCK1,&BLOCK2 ; Are Words equal?

JNZ ERROR ; No, branch to ERROR
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

Example Check two keys connected to port pins P0 and P1. If key1 is pressed, the
program branches to label MENU1; if key2 is pressed, the program branches
to MENU2.

P0IN .EQU 010h
KEY1 .EQU 01h
KEY2 .EQU 02h

CMP.B #KEY1,&P0IN
JEQ MENU1
CMP.B #KEY2,&P0IN
JEQ MENU2

 Instruction Set Overview

B-23 Instruction Set Description

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C –> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit
decimal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

Instruction Set Overview

B-24

DADD[.W] Source and carry added decimally to destination
DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C –> dst (decimally)

Description The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; CLEAR CARRY
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear Carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B CNT

 Instruction Set Overview

B-25 Instruction Set Description

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst – 1 –> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OscOff, CPUOff, and GIE are not affected.

Instruction Set Overview

B-26

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI–EDE–1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure B–4.

Figure B–4.Decrement Overlap

EDE

EDE+254

TONI

TONI+254

Example Memory byte at address LEO is decremented by one.

DEC.B LEO ; Decrement MEM(LEO)

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV.B #255,LEO

L$1 MOV.B @R6+,TONI–EDE–1(R6)
DEC.B LEO
JNZ L$1

 Instruction Set Overview

B-27 Instruction Set Description

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst – 2 –> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI–EDE–2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

Instruction Set Overview

B-28

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst –> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE is reset. OscOff and CPUOff are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by an NOP.

 Instruction Set Overview

B-29 Instruction Set Description

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR –> SR / .NOT.src .OR. dst –> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE is set. OscOff and CPUOff are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of port P0.2 to P0.7
; The interrupt level is the lowest in the system
; P0IN is the address of the register where all port bits are read. P0IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P0IN
BIC.B @SP,&P0IFG ; Reset only accepted flags
EINT ; Preset port 0 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

Instruction Set Overview

B-30

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 –> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The item on the top of a software stack (not the system stack) for byte data is
removed.

SSP .EQU R4
;

INC SSP ; Remove TOSS (top of SW stack) by increment
; Do not use INC.B since SSP is a word register

Example The status byte of a process STATUS is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

 Instruction Set Overview

B-31 Instruction Set Description

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 –> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is incremented by two

Instruction Set Overview

B-32

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst –> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00Aeh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

 Instruction Set Overview

B-33 Instruction Set Description

JC Jump if carry set
JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 × offset –> PC
If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P0IN.1 signal is used to define or control the program flow.

BIT #10h,&P0IN ; State of signal –> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15

Instruction Set Overview

B-34

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label, JZ label

Operation If Z = 1: PC + 2 × offset –> PC
If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......

 Instruction Set Overview

B-35 Instruction Set Description

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 × offset –> PC
If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......

Instruction Set Overview

B-36

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 × offset –> PC
If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

 Instruction Set Overview

B-37 Instruction Set Description

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset –> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
–511 to +512 words relative to the current program counter.

Instruction Set Overview

B-38

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 × offset –> PC
if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT – R5 –> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......

 Instruction Set Overview

B-39 Instruction Set Description

JNC Jump if carry not set
JLO Jump if lower

Syntax JNC label
JNC label

Operation if C = 0: PC + 2 × offset –> PC
if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 –> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here

Instruction Set Overview

B-40

JNE, JNZ Jump if not equal, jump if not zero

Syntax JNE label, JNZ label

Operation If Z = 0: PC + 2 × offset –> PC
If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

 Instruction Set Overview

B-41 Instruction Set Description

MOV[.W] Move source to destination
MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src –> dst

Description The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits Status bits are not affected.

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM–EDE–2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM–EDE–1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......

Instruction Set Overview

B-42

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0,R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

� To hold one, two or three memory words
� To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

 Instruction Set Overview

B-43 Instruction Set Description

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP –> temp
SP + 2 –> SP
temp –> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

Instruction Set Overview

B-44

PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP – 2 → SP
src → @SP

Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

 Instruction Set Overview

B-45 Instruction Set Description

* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

Instruction Set Overview

B-46

RETI Return from interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OscOff, CPUOff, and GIE are restored from system stack.

Example Figure B–5 illustrates the main program interrupt.

Figure B–5.Main Program Interrupt

PC –6

PC –4

PC –2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n–4

PCi +n–2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored
Onto Stack

RETI

 Instruction Set Overview

B-47 Instruction Set Description

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <– MSB <– MSB–1 LSB+1 <– LSB <– 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure B–6.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure B–6.Destination Operand—Arithmetic Shift Left
15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; otherwise it is reset
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; otherwise it is reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R7 is multiplied by 4.

RLA R7 ; Shift left R7 (× 2) – emulated by ADD R7,R7
RLA R7 ; Shift left R7 (× 4) – emulated by ADD R7,R7

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2) – emulated by
; ADD.B R7,R7

RLA.B R7 ; Shift left low byte of R7 (× 4) – emulated by
; ADD.B R7,R7

Note: RLA Substitution

The assembler does not recognize the instruction:

 RLA @R5+ nor RLA.B @R5+.

It must be substituted by:

 ADD @R5+,–2(R5) or ADD.B @R5+,–1(R5).

Instruction Set Overview

B-48

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <– MSB <– MSB–1 LSB+1 <– LSB <– C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure B–7.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure B–7.Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs, reset otherwise

Set if 03FFFh < dstinitial < 0C000h, reset otherwise
Set if 03Fh < dstinitial < 0C0h, reset otherwise

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C –> R5

Example The input P0IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P0IN ; Information –> Carry
RLC R5 ; Carry=P0in.1 –> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C –> Mem(LEO)

Example The input P0IN.1 information is to be shifted into the LSB of R5.

BIT.B #2,&P0IN ; Information –> Carry
RLC.B R5 ; Carry = P0in.1 –> LSB of R5

; High byte of R5 is reset

Note: RLC and RLC.B Emulation

The assembler does not recognize the instruction:

RLC @R5+.

It must be substituted by:

ADDC @R5+,–2(R5).

 Instruction Set Overview

B-49 Instruction Set Description

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB –> MSB, MSB –> MSB–1, ... LSB+1 –> LSB, LSB –> C

Description The destination operand is shifted right one position as shown in Figure B–8.
The MSB is shifted into the MSB, the MSB is shifted into the MSB–1, and the
LSB+1 is shifted into the LSB.

Figure B–8.Destination Operand—Arithmetic Right Shift

15 0

15 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Running Title—Attribute Reference

B-50

Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 –> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;

PUSH R5 ; hold R5 temporarily using stack
RRA R5 ; R5 × 0.5 –> R5
ADD @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5 –> R5
RRA R5 ; (1.5 × R5) × 0.5 = 0.75 × R5 –> R5
......
......

; OR
;

RRA R5 ; R5 × 0.5 –> R5
PUSH R5 ; R5 × 0.5 –> TOS
RRA @SP ; TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5 –> TOS
ADD @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5 –> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 –> R5: operation is on low byte only
; High byte of R5 is reset

; The value in R5 (low byte only) is multiplied by 0.75 (0.5 + 0.25).
;

PUSH.B R5 ; hold low byte of R5 temporarily using stack
RRA.B R5 ; R5 × 0.5 –> R5
ADD.B @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5 –> R5
RRA.B R5 ; (1.5 × R5) × 0.5 = 0.75 × R5 –> R5
......

; OR
;

RRA.B R5 ; R5 × 0.5 –> R5
PUSH.B R5 ; R5 × 0.5 –> TOS
RRA.B @SP ;TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5 –> TOS
ADD.B @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5 –> R5
......

 Instruction Set Overview

B-51 Instruction Set Description

RRC[.W] Rotate right through carry
RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C –> MSB –> MSB–1 LSB+1 –> LSB –> C

Description The destination operand is shifted right one position as shown in Figure B–6.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure B–9.Destination Operand—Carry Right Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Set if initial destination is positive and initial carry is set, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h –> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h –> R5; low byte of R5 is used

Instruction Set Overview

B-52

* SBC[.W] Subtract (borrow*) from destination
* SBC.B Subtract (borrow*) from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C –> dst
dst + 0FFh + C –> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to 0FFFFh, set otherwise

Reset if dst was decremented from 00 to 0FFh, set otherwise
V: Set if initially C = 0 and dst = 08000h

Set if initially C = 0 and dst = 080h

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

 Instruction Set Overview

B-53 Instruction Set Description

* SETC Set carry bit

Syntax SETC

Operation 1 –> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 3987 and R6 = 4137

DSUB ADD #6666h,R5 ; Move content R5 from 0–9 to 6–0Fh
; R5 = 03987 + 6666 = 09FEDh

INV R5 ; Invert this (result back to 0–9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (10000 – R5 – 1)
; R6 = R6 + R5 + 1
; R6 = 4137 + 06012 + 1 = 1 0150 = 0150

Instruction Set Overview

B-54

* SETN Set negative bit

Syntax SETN

Operation 1 –> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

 Instruction Set Overview

B-55 Instruction Set Description

* SETZ Set zero bit

Syntax SETZ

Operation 1 –> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Instruction Set Overview

B-56

SUB[.W] Subtract source from destination
SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 –> dst
or
[(dst – src –> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

 Instruction Set Overview

B-57 Instruction Set Description

SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination
SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C –> dst
or
(dst – src – 1 + C –> dst)

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

Note: Borrow Is Treated as a .NOT. Carry

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

Instruction Set Overview

B-58

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <–> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure B–10.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff, CPUOff, and GIE are not affected.

Figure B–10. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 –> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result

 Instruction Set Overview

B-59 Instruction Set Description

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 –> Bit 8 Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure B–11.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Figure B–11. Destination Operand Sign Extension

15 8 7 0

Example R7 is loaded with the Timer/Counter value. The operation of the sign-extend
instruction expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &TCDAT,R7 ; TCDAT = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000
ADD R7,R6 ; add value of EDE to 16-bit ACCU

Instruction Set Overview

B-60

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

 Instruction Set Overview

B-61 Instruction Set Description

XOR[.W] Exclusive OR of source with destination
XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst –> dst

Description The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OscOff, CPUOff, and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits in word TONI on bits
; set in low byte of R6,

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to 1s
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

B-62

C-1Flash Memory

Flash Memory

This chapter describes the MSP430 flash memory module. The flash memory
module is electrically erasable and programmable. Devices with a flash
memory module are multiple-time programmable devices (MTP). They can be
erased and programmed off-board, or in a system via the MSP430’s JTAG
peripheral module, a bootstrap loader, or via the processor’s resources.

Software running on an MSP430 device can erase and program the flash
memory module. This active software may run in RAM, in ROM, or in the flash
memory. The flash memory may be a different memory module or the same
memory module.

Topic Page

C.1 Flash Memory Organization C-2.

C.2 Flash Memory Data Structure and Operation C-5.

C.3 Flash Memory Control Registers C-13.

C.4 Flash Memory, Interrupt, and Security Key Violation C-18.

C.5 Flash Memory Access via JTAG and Software C-22.

Appendix C

Flash Memory Organization

C-2

C.1 Flash Memory Organization

The flash memory may have one or more modules of different sizes as shown
in Figure C–1. A module is a physical memory unit that operates independent
from other modules. In an MSP430 configuration with more than one flash
memory module, all modules are located in one linear-address range.

Figure C–1. Interconnection of Flash Memory Module(s)

ROM RAM

CPU
Includes

Test
JTAG

Flash
Memory

Module 1

MAB, 16 Bit

MDB, 16 Bit

TDI

TDO/TDI

TMS

TCK

Test/VPP
Flash

Memory

Module 2

To Other
Peripheral
Modules

Optional

16 Registers

Independent modules, such as Module1 and Module2, are intended to
execute software code from one module while simultaneously programming
or erasing another module.

Note: Flash Memory Module(s) in MSP430 Devices

Different devices may have one or more flash memory modules.

A flash memory module can not be accessed while being programmed or
erased.

If the active software and the target programming location are in the same flash
memory module, the program execution is halted (flag BUSY=1) until the
programming cycle is completed (flag BUSY=0). Then it proceeds with the
next instruction. The active software may also erase segments of the flash
memory module. The user should be careful not to erase memory locations
that are necessary to execute the software correctly.

Figure C–2 shows the flash memory Module1 in program or erase operation.
During this operation the module is disconnected from the memory address

Flash Memory Organization

C-3Flash Memory

bus and memory data bus. When a second module (here Module2) is
implemented, program code in this module can be executed while Module1 is
disconnected.

Figure C–2. Flash Memory Module1 Disabled, Module2 Can Execute Code
 Simultaneously

ROM RAM

CPU
Includes

Test
JTAG

Flash
Memory

Module 1

MAB, 16 Bit

MDB, 16 Bit

TDI

TDO/TDI

TMS

TCK

Test/VPP
Flash

Memory

Module 2

To Other
Peripheral
Modules

Optional

16 Registers

One MSP430 flash memory module will have, in addition to its code segments,
extra flash memory called information memory.

Flash Memory Organization

C-4

Figure C–3. Flash Memory Module Example

FFFFh

 Flash Memory

F000h

010FFh

01000h

 4Kbyte + 256Byte

 One Module

4-kbyte
Flash

Memory

256-Byte
Flash Memory

A module has several segments. The information memory has two segments
of 128 bytes each. In the example in Figure C–4, the 4-kB module has eight
segments of 512 bytes (Segment0 to Segment7), and two 128-byte segments
(SegmentA and SegmentB). Segment0 to Segment7 can be erased
individually or as a group. SegmentA and SegmentB can be erased
individually or as a group with segments 0 to 7.

The segment structure is described in the device’s data sheet. The information
memory can be located directly below the main memory’s address, or at a
different address but will be in the same module.

Note:

Flash memory modules may have different numbers of segments. Segment
are numbered from 0 up to n, e.g., segment 0 to segment n.

Flash Memory Data Structure and Operation

C-5Flash Memory

Figure C–4. Segments in Flash Memory Module, 4K-Byte Example

FFFFh

 Flash Memory

F000h

010FFh

01000h

One Module

Segment0

Segment1

Segment2

Segment3

Segment4

Segment5

Segment6

Segment7

SegmentA

SegmentB

FFFFh

 Flash Memory

F000h

010FFh

01000h

 4Kbyte + 256Byte
One Module

FE00h
FDFFh
FC00h

Several Segments

256-Byte
Flash

4-kbyte
Flash

Main Memory

Information
Memory

C.1.1 Why Is a Flash Memory Module Divided Into Several Segments?

Once a bit in flash memory has been programmed, it cannot be erased without
erasing a whole segment. For this reason, the MSP430 flash memory modules
have been heavily segmented to allow erasing and reprogramming of smaller
memory segments.

C.2 Flash Memory Data Structure and Operation

The flash memory can be read and written (programmed) in bytes or words.
Bits can be written as 0s once between erase cycles. The read access does
not differ from access to masked ROM or RAM. Flash memory has restrictions
in write operation:

� The default (erased) level for all bits is 1. Bits that are not programmed to
0s can be programmed to 0s at any time.

� The smallest memory portion to be erased is a segment. No single byte
or word erase is possible.

� Access to a flash memory module is only possible when the module is not
in a write or erase operation. For example, program code can not be
executed in a module while it is processing a write or erase operation. The
access limitation has no critical impact on program execution, but an
access violation can be flagged in some situations (see flash memory
register section in this appendix).

Flash Memory Data Structure and Operation

C-6

C.2.1 Flash Memory Basic Functions

The basic functions of flash memory are to:

� Supply program code and data during program execution

� Erase, under software or JTAG control, parts of a module (one segment),
multiple segments, or an entire module.

� Write data to a memory location under software or JTAG control. A double-
speed programming sequence is implemented within a 64-byte section of
the address range xx00h to xx3fh.

C.2.2 Flash Memory Block Diagram

The flash memory module has a minimum of three control registers, a timing
generator, a voltage generator to supply program and erase voltages, and the
flash memory itself. Data and address are latched when execution of a write
(program) or erase operation is in progress.

Figure C–5. Flash Memory Module Block Diagram

Enable
Data Latch

Enable
Address
Latch

Address Latch Data Latch

MAB
MDB

FCTL1

FCTL2

FCTL3

Timing
Generator

Programming
Voltage

Generator

Flash
Memory

Array

C.2.3 Flash Memory, Basic Operation

The flash memory module normally works in read mode, the address and data
latch are transparent, and the timing generator and programming voltage
generator are off. The flash memory module changes its mode of operation
when data is written (programmed) to the module, or when the flash memory,
or parts of it, are erased. In these situations, flash control registers FCTL1,
FCTL2, and FCTL3 need to be set up properly to ensure correct write or erase

Flash Memory Data Structure and Operation

C-7Flash Memory

operation. Once these registers are set up and write or erase is started, the
timing generator controls the entire operation and applies all signals internally.
If the BUSY control signal is set, it indicates that the timing generator is active
and a write or erase cycle is active. The block write mode also uses a second
control bit WAIT. There are three basic parts to a write or erase cycle:
preparation of program/erase voltage, control timing for the program or erase
operation, and the switch-off sequence of the program/erase voltage. Once a
write or erase function is started, the software should not access the flash
memory until the BUSY signal indicates, with 0, that it can be accessed again.
In critical situations where flash programming or erase should be immediately
stopped, the emergency exit bit EMEX can be set. The current operation may
be incomplete or the result may be incorrect.

Different clock sources (ACLK, MCLK, or SMCLK) can be selected to clock the
timing generator. The connected clock sources applied to the timing generator
may vary with the device, see data sheet for details. The clock source selected
should be active from the beginning of write or erase until the operation is fully
completed.

Figure C–6. Block Diagram of the Timing Generator in the Flash Memory Module

0

2
3

SSEL1
SSEL0

1

FN5 FN0

fx

PUC...........
Write ‘1’ to

EMEX

Flash Timing Generator
Divider, 1–64

Busy Wait

ACLK
MCLK

SMCLK
SMCLK

Reset

The selected clock source should be divided to meet the frequency require-
ment fx of the flash timing generator.

If the clock signals are not available throughout the duration of the write or
erase operation, or their frequencies change drastically, the result of the write
or erase may be marginal, or the flash memory module may be stressed above
the limits of reliable operation.

Table C–1 shows all useful combinations of control bits for proper write and
erase operation:

Flash Memory Data Structure and Operation

C-8

Table C–1. Control Bits for Write or Erase Operation

FUNCTION PERFORMED BLKWRT WRT Meras Erase BUSY WAIT Lock

Write word or byte 0 1 0 0 0 0 0

Write word or byte in same block, block write

mode

1 1 0 0 0 1 0

Erase one segment by writing to any address

in the target segment (0 to n or A or B)

0 0 0 1 0 0 0

Erase all segments (0 to n) but not the infor-

mation memory (SegmentA and SegmentB)

0 0 1 0 0 0 0

Erase all segments (0 to n and A and B) by

writing to any address in the flash memory

module

0 0 1 1 0 0 0

Note: A write to flash memory performed with any other combination of bits BLKWRT, WRT, Meras, Eras, BUSY, WAIT, and
Lock will result in an access violation. ACCVIFG is set and an NMI is requested if ACCVIE=1.

C.2.4 Flash Memory Status During Code Execution

The flash memory module delivers data for code execution in the same
manner as any masked ROM or RAM. The flash memory module should be
in read mode, with no write (programming) or erase operation active. By
default, power-on reset (POR) puts the flash memory into read mode. No
control bits need to be defined in the flash memory control registers after POR
for code execution.

C.2.5 Flash Memory Status During Erase

The default bit level of the flash memory is 1. Any successful erase sets all bits
of a segment or a block to this default level. Once a bit is programmed to the
0-level, only the erase function can reset it back to 1. Erase can be performed
for one segment, a group of segments, or for an entire module. This can vary
for each device configuration, and the exact implementation should be noted
in the data sheet.

The erase operation starts with the following sequence:

1) Set the correct input-clock frequency of the timing generator by selecting
the clock source and predivider.

2) Reset the LOCK control bit, if set.

3) Watch the BUSY bit. Continue to the next steps only if the BUSY bit is
reset.

4) Set the erase control bit Erase to erase a segment, or

5) Set the mass-erase control bit MEras to erase a group of segments or

6) Set the mass-erase (MEras) and erase (Erase) control bits to erase the
entire flash memory

7) Execute a dummy write to any address in the range to be erased.

Flash Memory Data Structure and Operation

C-9Flash Memory

The dummy write starts the erase cycle. An example of dummy write is
CLR &0F012h.

Note that a dummy write is ignored in a segment where the selected operation
can not be executed successfully.

An example of such a situation can take place when Segment 1 is to be erased:
the control bits are set properly, but the dummy write is sent to the information
memory. No flag indicates this unsuccessful erase situation.

Figure C–7. Basic Flash EEPROM Module Timing During the Erase Cycle

BUSY

Generate
Erase Voltage

Erase Operation Active

Entire Erase Cycle Timing Erase Voltage
Remove

Time of Increased Current Consumption From Supply, VCC

Mass Erase: t(erase) = 5296/fx; Segment Erase: t(erase) = 4817/fx

The erase cycle completes successfully when none of the following
restrictions is violated:

� The selected clock source is available until the cycle is completed.

� The predivider should not be modified during the operation.

� No further access to the flash memory module is performed while BUSY
is set.

� No read of data from this block
� No write into this block
� No further erase of this block

An access will result in setting the KEYV bit and requesting an NMI
interrupt. The NMI interrupt routine should handle such violations.

� The supply voltage should be within the devices’ electrical specifications
defined in the respective data sheet; however, slight variations can be
tolerated.

Control bit BUSY indicates an active erase cycle. It is set immediately after a
dummy write starts the timing generator. It remains set until the entire erase
cycle is completed and the erased segment or block is ready to be accessed
again. The BUSY bit can not be set by software. But it can be reset. In case
of emergency, set the emergency exit (EMEX) bit and the erase operation will
be stopped immediately; BUSY bit is reset. One example of stop erase by
software is when the supply voltage drops drastically and the operating
conditions of the controller are exceeded. Another example is when the timing
of the erase cycle gets out of control, for example, when the clock-source
signal is lost.

Flash Memory Data Structure and Operation

C-10

Note:

When the erase cycle is stopped before its normal completion by the
hardware, the timing generator is stopped and erasure of the flash memory
can be marginal. An incomplete erasure can be verified. But an erase level
of 1 can be inconsistently read as valid when supply voltage, temperature,
access time (instruction execution, data read), and frequency vary.

C.2.6 Flash Memory Status During Write (Programming)

The flash memory erase bit level is 1. Bits can only be written (programmed)
to a 0-level. Once a bit is programmed, only the erase function can reset it back
to the 1-level. The byte or word 0-level can not be written (programmed) in one
cycle. Any bit can be programmed from 1 to 0 at any time, but not from 0 to 1.

Two slightly different write operations can be performed: write a single byte or
word of data, or write a sequence of bytes or words. A write sequence of bytes
or words can be performed as multiple sequential, or as a block write. The
block write is approximately twice as fast as a multiple-sequential write
algorithm.

The write (program) operation starts with the following sequence:

� Set the correct input clock frequency of the timing generator by selecting
the clock source and predivider.

� Reset the LOCK control bit, if set.

� Watch the BUSY bit. Continue with the next steps only if the BUSY bit is
reset.

� Set the write-control bit WRT when a single byte of word data is to be
written.

� Set the write WRT and BLKWRT control bits when block write is chosen
to write multiple bytes or words to the flash memory module.

� Writing the data to the selected address starts the timing generator.
The data is written (programmed) while the timing generator proceeds.

Note:

Whenever the write cycle is stopped before its normal ending by the
hardware, the timing generator is stopped and the data written to the flash
memory can be marginal. The data may be incorrect, which can be verified,
or the data are verified to be correct but the programming is marginal.
Reading of the data may be inconsistently valid when varying the supply
voltage, the temperature, the access time (instruction execution, data read),
or the time.

Flash Memory Data Structure and Operation

C-11Flash Memory

Figure C–8. Basic Flash Memory Module Timing During Write (Single Byte or Word) Cycle

ÎÎ
ÎÎ

Î
Î

BUSY

Generate
Programming Voltage

Programming Operation Active

Entire Programming Cycle Timing Programming Voltage
Remove

Time of Increased Current Consumption From Supply, VCC

t(prog) = 33/fx

Figure C–9. Basic Flash Memory Module Timing During a Block-Write Cycle

t(prog3) = 5/fx

BUSY

WAIT

Generate
Programming Voltage

Programming Operation Active

Entire Programming Cycle Timing

Programming Voltage

t(prog_all) ∼≤ 25ms

Remove

Time of Increased Current Consumption From Supply, VCC

t(prog1) = 30/fx t(prog2) = 20/fx t(prog2) = 20/fx

Write to Flash e.g., MOV #123h, &Flash

BLKWRT bit

The block write can be used on sequential addresses of the memory module.
One block is 64 bytes long, starting at 0xx00h, 0xx40h, 0xx80h, or 0xxC0h, and
ending at 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh. Examples of sequential block
addresses are:

0F000h to 0F03Fh, 0F040h to 0F07Fh,0F080h to 0F0BFh,
0F0C0h to 0F0FFh, 0F100 to 0F13Fh,

The block-write (program) operation at the 64-byte boundaries needs special
software support (test of address 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh was
successful):

� Wait until the WAIT bit is set, indicating that the write of the last byte or word
was completed.

� Reset control bit BLKWRT.

� The BUSY bit remains set until the programming voltage is removed from
the flash memory module and overstress is avoided.

� Wait the recovery time t(rcv) before another block write is started.

Flash Memory Data Structure and Operation

C-12

The write cycle is successfully completed if none of the following restrictions
is violated:

� The selected clock source is available until the cycle is completed.

� The predivider is not modified.

� The access to the flash memory module is restricted as long as BUSY is
set.

The conditions to read data from the flash memory with and without access
violation are listed in Table C–2.

Table C–2. Conditions to Read Data From Flash Memory

Flash Operation Instruction
Fetch

(see Note 1)

BUSY WAIT Data on Memory Data
Bus (MDB)

Action

Byte/word program
cycle (see Note 2)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Flash read mode 0 0 Memory contents from
applied address

PC = PC + 2

Page erase cycle
(see Note 3)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Mass-erase cycle
(see Note 3)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

All erase (mass and in-
formation memory)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Block write
(see Note 4)

N.A. 1 0 3FFF Access violation and
LOCK (see Note 5)

No 1 1 3FFF Nothing

Yes 1 1 3FFF Access violation and
LOCK (see Note 5)

Notes: 1) Instruction fetch refers to the fetch part of an instruction, and reads one word. The instruction fetch reads the first
word of instructions with more than one word. The JMP instruction has one word. The data fetched (3FFFh) is used
by the CPU as an instruction.

2) Ensure that the programmed data does not result in unpredictable program execution, such as destruction of
executable code sequences.

3) If the PC points to the memory location being erased, no access violation indicates this situation. After erase, no
executable code is available and an unpredictable situation occurs.

4) Any software located in a flash memory module can not use the BLKWRT mode to program the same flash memory
module. Using the byte or word programming mode allows programming data in the flash memory module holding
the software code currently executing.

5) The access violation sets the LOCK bit to 1. Setting the LOCK bit allows completion of the active block write
operation in the normal manner.

Flash Memory Control Registers

C-13Flash Memory

� The supply voltage should be within the devices’ electrical conditions and
can only vary slightly, as specified in the applicable data sheet

The control bit BUSY indicates that the write or block-write cycle is active. It
is set by the instruction that writes data to the flash memory module and starts
the timing generator. It remains set until the write cycle is completed and the
programming voltage is removed. In the write mode the BUSY bit indicates if
the flash memory is ready for another write operation. In block write mode the
WAIT bit indicates if the flash memory is ready for another write operation and
the BUSY bit indicates the block write operation is completed. In case of
emergency, the emergency exit bit EMEX is set and stops the write cycle
immediately. The programming voltage is switched off. One situation where
the write cycle should be stopped by software is when the supply voltage drops
drastically and the controller’s operating conditions may be exceeded.
Another case is when the flash memory timing gets out of control, as when the
clock-source signal is lost.

Note:

Whenever the write cycle is stopped before its normal ending by the
hardware, the timing generator is stopped and the data written in flash
memory may be marginal. Data reading may be inconsistently valid when
varying the supply voltage, the temperature, the access time (instruction
execution, data read), or the time.

C.3 Flash Memory Control Registers

Defining the correct control bits of three control registers enables write
(program), erase, or mass-erase. All three registers should be accessed using
word instructions only. The control registers are protected against false write
or erase cycles via a key word. Any violation of this keyword sets the KEYV
bit and requests a nonmaskable interrupt (NMI). The keyword is different to the
keyword used with the Watchdog Timer.

All control bits are reset during PUC. PUC is activated after VCC is applied, a
reset condition is applied to the RST/NMI pin or watchdog, or a flash operation
was not performed normally.

C.3.1 Flash Memory Control Register FCTL1

Any write to control register FCTL1 during erase, mass-erase, or write
(programming) will end in an access violation with ACCVIFG=1. In an active
segment-write mode, the control register can be written if wait mode is active
(WAIT=1). In an active block write mode and while WAIT=0, writing to control
register FCTL1 will also end in an access violation with ACCVIFG=1.

Read access is possible at any time without restrictions.

Any write to control register FCTL1 during erase, mass-erase, or write
(programming) will end in an access violation with ACCVIFG=1. In an active

Flash Memory Control Registers

C-14

segment write mode, the control register can be written if wait mode is active
(WAIT=1). In an active block write mode and while WAIT=0, writing to control
register FCTL1 will also end in an access violation with ACCVIFG=1.

Read access is possible at any time without restrictions.

The control bits of control register FCTL1 are:
7 0

rw–0 rw–0 r0 r0 r0 rw–0 rw–0 r0
0128h

FCTL1
15 8

FCTL1 read:
FCTL1 write:

0 9 6 h
0 A 5 h

EraseMEras
SEG
WRT WRT res. res.res.res.

Erase 0128h, bit1, Erase a segment

0: No segment erase is started.

1: Erase of one segment is enabled. The segment n to be erased is
defined by a dummy write into any address within the segment.
The Erase bit is automatically reset when the erase operation is
completed.

Note: Instruction fetch access during erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

MEras 0128h, bit2, Mass-erase, Segment0 to Segmentn are erased together.

0: No erase is started

1: Erase of Segment0 to Segmentn is enabled. When a dummy write
into any address in Segment0 to Segmentn is executed, mass-
erase is started. The MEras bit is automatically reset when the
erase operation is completed.

Note: Instruction fetch access during mass-erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

WRT 0128h, bit6, The bit WRT should be set to get a successful write execution.

If bit WRT is reset and write access to the flash memory is performed,
an access violation occurs and ACCVIFG is set.

Note: Instruction fetch access during erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

BLKWRT 0128h, bit7, Bit BLKWRT can be used to reduce total programming time.

The block-write bit BLKWRT is useful if larger sequences of data have
to be programmed. If programming of one block is completed, a reset
and set sequence should be performed to enable access to the next
block. The WAIT bit should be high before the next write instruction is
executed. See also paragraph C.1.1 and Figure C–9.

0: No block write accelerate is selected.

1: Block write is used. This bit needs to be reset and set between
borders of blocks.

Flash Memory Control Registers

C-15Flash Memory

C.3.2 Flash Memory Control Register FCTL2

A PUC resets the flash timing generator. The generator is also reset if the
emergency exit bit EMEX is set.

The timing generator generates the timing necessary to write, erase, and
mass-erase from a selected clock source. Two control bits SSEL0 and SSEL1
in control register FCTL2 can select one of three clock sources. The clock
source selected should be divided to meet the frequency requirements for fx,
as specified in the device’s data sheet.

Writing to control register FCTL2 should not be attempted if the BUSY bit is set;
otherwise an access violation will occur (ACCVIFG=1). Read access to FCTL2
is possible at any time without restrictions.

7 0

rw–0 rw–1 rw–0 rw–0 rw–0 rw–0 rw–1 rw–0
012Ah

FCTL2
SSEL1

15 8

FCTL2 read:
FCTL2 write:

0 9 6 h
0 A 5 h

SSEL0 FN5 FN4 FN3 FN2 FN1 FN0

The control bits are:

FN0
to

012Ah, bit0, These six bits define the division rate of the clock signal. The division
rate can be 1 to 64, depending on the digital value of FN5 to FN0

FN5 012Ah, bit5, Plus one

SSEL0 012Ah, bit0, Determine the clock source.

SSEL1 012Ah, bit6, bit 7: 0: ACLK

1: MCLK

2,3 SMCLK

Flash Memory Control Registers

C-16

C.3.3 Flash Memory Control Register FCTL3

There are no restrictions on modifying this control register. The control bits are
reset or set (WAIT) by a PUC, but key violation bit KEYV is reset by POR.

7 0

KEYV

15 8

BUSYLock
ACCV

IFG
EMEXres.res.

FCTL3

012Ch

FCTL3 read:
FCTL3 write:

096h
0A5h

r0 r0 rw–0 rw–1 r–1 rw–0 rw–(0) r(w)–0

WAIT

BUSY 0128h, bit0, The bit BUSY shows if an access to the flash memory is possible
(BUSY=0), or if an access violation can occur. The BUSY bit is read
only, but a write operation is allowed. The BUSY bit should be tested
before each write and erase cycle. The flash-timing generator
hardware immediately sets the BUSY bit after the start of a write
operation, a block-write operation, a segment erase, or a mass- erase.
Once the timing generator has completed its function, the BUSY bit is
reset by hardware.

The program and erase timing are shown in Figures C–7, C–8, and
C–9.

0: Flash memory is not busy. Read, write, erase and mass-erase are
possible without any violation of the internal flash timing. The
BUSY bit is reset by POR and by the flash timing generator.

1: Flash memory is busy. Remains in busy state if block write function
is in wait mode.

The conditions for access to the flash memory during BUSY=1 are
described in paragraph C.2.6.

KEYV, 012Ch, bit1, Key Violated.

0: Key 0A5h (high byte) was not violated.

1: Key 0A5h (high byte) was violated. Violation occurs when a write
access to register FCTL1, FCTL2 or FCTL3 is executed and the
high byte is not equal to 0A5h. If the security key is violated, bit
KEYV is set and a PUC is performed. The KEYV bit can be used
to determine the source that forced a start of the program at the
reset vector’s address. The KEYV bit is not automatically reset and
should reset by software.

Note:Any key violation results in a PUC, independent of the state of the
KEYV bit. To avoid endless software loops, the flash memory
control registers should not be written during a key violation
service routine.

Note:The software can set the KEYV bit. A PUC is also performed if
it is set by software.

Flash Memory Control Registers

C-17Flash Memory

ACCVIFG bit2, Access violation interrupt flag

The access-violation interrupt flag is set when the flash memory
module is improperly accessed while a write or erase operation is
active. The violation situations are described in section C.2. When the
access-violation interrupt-enable bit is set, the interrupt-service
request is accepted and the program continues at the NMI
interrupt-vector address.

Reading the control registers will not set the ACCVIFG bit.

Note:The proper interrupt-enable bit ACCVIE is located in interrupt-
enable register IE1 of the special-function register. Software can
set the ACCVIFG bit; in this case, an NMI is also executed.

WAIT 012Ch, bit3, Wait. In the block write mode the WAIT bit indicates that the flash
memory is ready to receive the (next) data for programming. The WAIT
bit is read only, but a write to the WAIT bit is allowed.

The WAIT bit is automatically reset if the BLKWRT bit is reset or the
LOCK bit is set. Block-write operation is completed, and then the WAIT
bit returns to 1.

Condition, BLKWRT=1 (see Figure C-9):
After each successful write operation, the BUSY bit is reset to indicate
that another byte or word can be written (programmed). The BUSY bit
does not indicate the condition when the timing generator has
completed the entire programming. The high-voltage portion and
voltage generator remain active. The maximum time t(CPT) should not
be violated.

0: Block-write operation has started and programming is in progress.

1: Block-write operation is active and programming of data is
completed. Waiting for the next data to be programmed.

Lock 012Ch, bit4, The Lock bit can be set during any write, erase of a segment, or
mass-erase request. The active sequence is completed normally. In
block-write mode, if the Lock bit is set and BLKWRT and WAIT are set,
the BLKWRT and WAIT bits are reset and the mode ends normally. The
WAIT bit is 1 after block-write mode has ended. Software or hardware
can control the Lock bit. If an access violation occurs (see conditions
described in paragraph C.1.1), the ACCVIFG and the Lock bit are set.

0: Flash memory can be read, programmed, erased, and mass-
erased.

1: Flash memory can be read but not programmed, erased, or
mass-erased. A current program, erase, or mass-erase operation
is completed normally. The access-violation interrupt flag
ACCVIFG is set when the flash memory module is accessed while
the Lock bit is set.

Flash Memory, Interrupt, and Security Key Violation

C-18

EMEX 012Ch, bit5, Emergency exit. The emergency exit should only be used when a flash
memory write or erase operation is out-of-control.

0: No function.

1: Stops the active operation immediately and shuts down all internal
parts of the flash memory controller. Current consumption
immediately drops back to the active mode. All bits in control
register FCTL1 are reset. Since the EMEX bit is automatically reset
by hardware, the software always reads EMEX as 0.

C.4 Flash Memory, Interrupt, and Security Key Violation

One NMI vector is used for three non-maskable interrupt (NMI) events,
RST/NMI, oscillator fault (OFIFG), and flash-access violation (ACCVIFG). The
software can determine the source of the interrupt request by testing interrupt
flags NMIIFG, OFIFG, and ACCVIFG. They remain set until reset by software.

Flash Memory, Interrupt, and Security Key Violation

C-19Flash Memory

Figure C–10. Access Violation (Non)Maskable Interrupt Scheme in Flash Memory Module

Clear

S

PO
RRST/NMI

S

Clear

Clear

NMIIFG

NMIIE

Clear

S

PUC

OSCFault

OFIFG

OFIE

FCTL1.1

ACCV

IE1.5

IFG1.4

IE1.4

IFG1.4

IE1.4

NMIES
TMSEL

NMI EQU

PUC

POR

KEYV

Flash Module
Flash Module

Flash Module

PUC POR

Counter

S

Clear

Clear

WDTQn

WDTIFG
IRQ

WDTIE

IFG1.0

IE1.0

PUC

POR

IRQA

TIMSEL

WDT

Watchdog Timer Module
NMI_IRQA

IRQA: Interrupt Request Accepted

NMIRS

System Reset
Generator

PORVCC

ACCVIE

ACCVIFG

PUC

Flash Memory, Interrupt, and Security Key Violation

C-20

C.4.1 Example of an NMI Interrupt Handler

yes

no
OFIFG=1

yes

no
ACCVIFG=1

yes

Reset ACCVIFG

no
NMIIFG=1

Reset NMIIFGReset OFIFG

Start of NMI Interrupt Handler
Reset by HW:

OFIE, NMIE, NMIIFG

User’s Software,
Oscillator Fault

Handler

User’s Software,
Flash Access

Violation Handler

User’s Software,
External NMI

Handler

Optional

Set NMIIE, OFIE,
ACCVIE Within One

Instruction

RETI
End of NMI Interrupt

Handler

Example 1:

Example 2:
BIS #(NMIIE+OFIE+ACCVIE), &IE1

BIS Mask,&IE1 ; Mask enables only
 ; interrupt sources

The NMI handler takes care of all sources requesting a nonmaskable interrupt.
The NMI interrupt is a multiple-source interrupt per MSP430 definition. The
hardware resets the interrupt-enable flags: the external nonmaskable interrupt
enable NMIIE, the oscillator fault interrupt enable OFIE, and the flash memory
access-violation interrupt enable. The individual software handlers reset the
interrupt flags and reenables the interrupt enable bits according to the
application needs. After all software is processed, the interrupt enable bits
have to be set if another NMI event is to be accepted. Setting the interrupt
enable bits should be the last instruction before the return-from-interrupt
instruction RETI. If this rule is violated, the stack can grow out of control while
other NMI requests are already pending. Setting the interrupt enable bits can
be accomplished by using a bit-set-instruction BIS using immediate data or a
mask. The mask data can be modified anywhere via software (for example in
RAM); this constitutes the nonmaskable interrupt processing.

C.4.2 Protecting One-Flash Memory-Module Systems From Corruption

MSP430 configurations having one flash memory module use this module for
program code and interrupt vectors. When the flash memory module is in a
write, erase, or mass-erase operation and the program accesses it, an access
violation occurs. This violation will request an interrupt service – but when the
interrupt vector is read from the flash memory, 03FFFh will be read
independent of the data in the flash memory at the vector’s memory location.

Flash Memory, Interrupt, and Security Key Violation

C-21Flash Memory

To protect the software from this error situation, all interrupt sources have to
be disabled since all interrupt requests will fail. The flash memory returns the
vector 03FFFh. Before the interrupt enable bits are modified, they can be
stored in RAM to be restored when the flash memory is ready for access again.

The following interrupt enable bits should be reset to stop all interrupt service
requests:

� GIE = 0

� NMIIE = ACCVIE = OFIE = 0

Additionally the watchdog should be halted to prevent its expiration when flash
memory is busy:

� WDTHOLD = 1

When the flash memory is ready, the interrupt sources can be enabled again.
Before they are enabled, critical interrupt flags should be checked and, if
necessary, served or reset by software.

� GIE = 1 or left disabled, or be restored to the previous level

� NMIIE = ACCVIE = OFIE = 1 or left disabled, or be restored to the previous
level

� WDTHOLD = 0 or left disabled, or be restored to the previous level

Flash Memory Access via JTAG and Software

C-22

C.5 Flash Memory Access via JTAG and Software

C.5.1 Flash Memory Protection

Flash memory access via the serial test and programming interface JTAG can
be inhibited when the security fuse is activated. The security fuse is activated
via serial instructions shifted into the JTAG. Activating the fuse is not
reversible, and any access to the internal system is disrupted. The bypass
function described in the IEEE1149.1 standard is active.

C.5.2 Program Flash Memory Module via Serial Data Link Using JTAG Feature

The hardware interconnection to the JTAG pins is done via four separate pins,
plus the ground or VSS reference level. The JTAG pins are TMS, TCK, TDI
(/VPP), and TDO (/TDI).

Figure C–11. Signal Connections to MSP430 JTAG Pins

TMS

TCK

TDI

TDO/TDI

MSP430Fxxx

TMS

TCK

TDI

TDO

Level Shifter

XOUT/TCLKTCLK

EN1

68 kΩ

TESTTest/VPP

EN2

VCC

SN74AHC244
VCC

VCC/DVCC
AVCC

VSS/DVSS
AVSS

C.5.3 Programming a Flash Memory Module via Controller Software

No special external hardware is required to program a flash memory module.
The power supply at pin VCC should supply sufficient current during write
(program) and erase modes. Please separate the device’s data sheet for flash
write end erase current. The software algorithm is simple. The embedded
timing generator in the flash memory module controls the program and erase
cycles. Software can run in the same flash memory module where data is to
be written, on in other memory modules, such as ROM, RAM, or another flash
memory module.

Flash Memory Access via JTAG and Software

C-23Flash Memory

C.5.3.1 Example: Programming One Word Into a Flash Memory Module via Software
Execution Outside This Module

This example assumes that the code to program the flash location is not
executed from the target flash memory module.

BUSY = 1
yes

yes

no

no

BUSY = 1

LOCK=1

LOCK=0, WRT = 1
Write Data to Flash Address

Disable all Interrupt Sources
and Watchdog

Restore or Enable Required
Interrupt Sources and Watchdog

FXKEY .set 03300h
FWKEY .set 0A500h
; No interrupt request may happen while the flash is programmed

Test_Busy1
BIT #BUSY,&FCTL3
JNZ Test_Busy1

MOV #FWKEY,&FCTL3 : Clear lock bit
MOV #(FWKEY+WRT),&FCTL1 : Enable write to flash
MOV #123h,&0FF1Eh : Write a word to flash

Test_Busy2
BIT #BUSY,&FCTL3 ; still busy?
JNZ Test_Busy2 ; yes, repeat busy test
MOV #FWKEY,&FCTL1 : Reset write bit
XOR #(FXKEY+LOCK),&FCTL3 : Change lock bit to 1

; Enable those interrupt sources that should be accepted

The BUSY bit can be tested before the write to the flash memory module is
done, or after a write (program) starts:

� For flash memory locations that hold data, it is a good practice to test the
BUSY bit before the write is executed. This has some time benefits, since
the write process is executed via the flash memory timing generator
without further CPU intervention. It is important that the clock source
remains active until BUSY is reset by the flash memory hardware.

The power or clock management, responsible for entering low-power
modes, has to make sure that it does not switch off the clock source used
by the flash controller.

� For flash memory blocks that hold program code, it is a good practice to
test the BUSY bit after the write is executed. The program can only
proceed if the module can be accessed again. No special attention is
needed during execution of software code. Every write to the flash
memory module has to leave the programming cycle with the BUSY bit
reset.

Testing the BUSY bit before writing to a flash memory block that holds
program code ensures that the active program will not access the flash
memory module. Two types of access are visible: execute program code,
or read and write data on this flash memory module.

Flash Memory Access via JTAG and Software

C-24

C.5.3.2 Example: Programming One Word Into the Same Flash Memory Module via Software

The program execution waits after the write-to-flash instruction (MOV
#123h,&0FF1Eh) until the busy bit is reset again. If no other write-to-flash
instruction method is used the BUSY bit test may not be needed to ensure
correct flash-write handling.

LOCK=0, WRT = 1
Write Data to Flash Address

Disable all Interrupt Sources
and Watchdog

Restore or Enable Required
Interrupt Sources and

Watchdog

; No interrupt request may happen while the flash is programmed
MOV #FWKEY,&FCTL3;LOCK=0
MOV #(FWKEY+WRT),&FCTL1 : Enable Write to flash
MOV #123h,&0FF1Eh : Write a word to flash

MOV #FWKEY,&FCTL1 : Reset Write bit
XOR #(FXKEY+LOCK),&FCTL3 : Change Lock bit to 1

WRT = 0, LOCK=1

; Enable those interrupt sources that should be accepted

FXKEY .set 03300h
FWKEY .set 0A500h

Flash Memory Access via JTAG and Software

C-25Flash Memory

C.5.3.3 Example, Programming Byte Sequences Into a Flash Memory Module via Software

Sequences of data, bytes, or words can use the block-write feature. This
reduces the programming time by about one half.

yes

no

no

yes

Set Pointer for Start and End
Clear Lock Bit

SEG WRT = WRT =0

End of Block Write

no

yes

FXKEY .set 03300h
FWKEY .set 0A500h
FRKEY .set 09600h

Test_Busy1

BIT
JNZ

#BUSY,&FCTL3 ; Flash busy? BLKWRT ended?
Test_Busy1

MOV #(FWKEY+WRT+BLKWRT), &FCTL1 ; Block write

Test_WAIT1

RAM2FLASH
MOV #Start_Ptr,Rx
MOV #End_Ptr,Ry
MOV #FWKEY,&FCTL3

CMP Rx,Ry ; All data programmed?
JZ End_Seg_Write

MOV.B @Rx+,(Flash_Start_Ptr–Start_ptr–1) (Rx)
; Program data: in this example one byte

BIT #03Fh,Rx
JNZ Test_Wait1

; Block border?

Test_Wait2

BIT #WAIT,&FCTL3 ; Test if data written
JZ Test_Wait2

MOV #FWKEY,&FCTL1 ; Stop block write
JMP Test_busy1 ; Block write ends if busy=0

End_Seg_Write
; All data are programmed

MOV #FWKEY,&FCTL1 ; Stop block write

Test_Busy2

BIT #BUSY,&FCTL3 ; Block write ended?
JNZ Test_Busy2
XOR #(FXKEY+LOCK),&FCTL3 ; Change Lock bit to 1

; Ensure that neither Watchdog Timer, nor
;interrupts nor Low-Power Modes may corrupt
; proper execution

yes

no

Busy ?

SEG WRT = WRT =1

BIT
JNE

#WAIT,&FCTL3
Test_WAIT1

; Clear lock bit

WAIT = 1

Write Byte to Flash

Block
border?

yes

no

WAIT = 1

Busy ?
yes

no

SEG WRT = WRT =0

All data
Programmed?

Flash Memory Access via JTAG and Software

C-26

C.5.3.4 Example, Erase Flash Memory Segment or Module via Software Execution
Outside This Flash Module

The following sequence can be used to erase a segment, or mass-erase of
segments.

yes

BIC #(FWKEY+LOCK), &FCTL3 ;Reset lock bit

Test_Busy1

Test_Busy2

XOR #(FXKEY+LOCK),&FCTL3

Dummy Write
CLR &0F000h

BUSY = 1

yes
BUSY = 1

Erase or Mass Erase

Segment Erase: Erase = 1
or

Mass Erase: MEras = 1

End of Erase or
‘Mass’ Erase

BIT #BUSY,&FCTL3
JNZ Test_Busy1

MOV #(FWKEY+Erase),&FCTL1 ; select segment erase

BIT #BUSY,&FCTL3
JNZ Test_Busy2

C.5.3.5 Example, Erase Flash Memory Segment Module in the Same Flash Memory Module
via Software

LOCK=0, Eras=1 (or MEras=1)
Dummy Write to Flash Address in the

Target Segment

Disable All Interrupt Sources
and Watchdog

Restore or Enable Required
Interrupt Sources and Watchdog

MOV #(FWKEY+Eras),&FCTL1 ;Enable Erase of Flash
CLR &0FA00h ;Dummy Write to Flash

;Erase Segment 2

XOR #(FXKEY+Lock),&FCTL3 ; Change Lock bit to 1

; The erase bit Eras is automatically reset
 LOCK=1

; Enable those interrupt sources that should be accepted

; Disable all possible interrupt sources and watchdog

; Program execution in information memory if MEras=1 (Eras=0)

C.5.3.6 Code for Write (Program), Erase, and Mass-Erase

Software that controls write, erase, or mass-erase can be located in the flash
memory module and copied during execution into RAM. In this case the code
should be written position-independent, and should be loaded (for instance,
to RAM) before it is used. The algorithm runs in RAM during the programming
sequence to avoid conflict when the flash memory is written or erased.

Flash Memory Access via JTAG and Software

C-27Flash Memory

In the following example, a subroutine moves the programming-code
sequence to another memory such as RAM.

Source Start Address of The Code Sequence >> R7
Destination Start Address of The Code Sequence >> R10

Move One Word: (R7) >> (R10)
Increment Source and Destination Pointer in R7 and R10

Start-of-Subroutine: Load_Flash_Routine

End-of-Subroutine: RET

End-of-Source Code ?

;--

; Definitions used in Subroutine:

; Move programming code sequence into RAM (load_flash_routine)
;--
Flash_ram .set 0222h ; Start address of flash

; program in the RAM
; program in the RAM

Prg_source_start .set 0xxxxh ; Start address of code

; in the flash to be prg’ed

Prg_source_end .set 0yyyyh ; End address of code

; in the flash to be prg’ed

Prg_dest_start .set Flash_ram

load_flash_routine ; The code of the program which moves

; Flash access code (write, erase,..)

; starts at label load_flash_routine

push r9

push r10

mov #Prg_source_start,R9 ; load pointer source

mov #Prg_dest_start,R10 ; load pointer destination

load_flash_prg

mov @R9,0(R10) ; move a word

incd R10 ; destination pointer + 2

incd R9 ; source pointer + 2

cmp # Prg_source_end,R9 ; compare to end_of_code

jne load_ flash_prg

pop r9

pop r10
ret

C-28

